Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2201.13094
Cited By
Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer
31 January 2022
Beatrice Acciaio
Anastasis Kratsios
G. Pammer
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer"
7 / 7 papers shown
Title
Deep Kalman Filters Can Filter
Blanka Hovart
Anastasis Kratsios
Yannick Limmer
Xuwei Yang
45
1
0
31 Dec 2024
Approximation Rates and VC-Dimension Bounds for (P)ReLU MLP Mixture of Experts
Anastasis Kratsios
Haitz Sáez de Ocáriz Borde
Takashi Furuya
Marc T. Law
MoE
41
1
0
05 Feb 2024
Generative Ornstein-Uhlenbeck Markets via Geometric Deep Learning
Anastasis Kratsios
Cody B. Hyndman
13
0
0
17 Feb 2023
Chaotic Hedging with Iterated Integrals and Neural Networks
Ariel Neufeld
Philipp Schmocker
17
10
0
21 Sep 2022
Small Transformers Compute Universal Metric Embeddings
Anastasis Kratsios
Valentin Debarnot
Ivan Dokmanić
54
11
0
14 Sep 2022
Universal Approximation Under Constraints is Possible with Transformers
Anastasis Kratsios
Behnoosh Zamanlooy
Tianlin Liu
Ivan Dokmanić
51
26
0
07 Oct 2021
Optimal Stopping via Randomized Neural Networks
Calypso Herrera
Florian Krack
P. Ruyssen
Josef Teichmann
32
37
0
28 Apr 2021
1