ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.13094
  4. Cited By
Designing Universal Causal Deep Learning Models: The Geometric
  (Hyper)Transformer

Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer

31 January 2022
Beatrice Acciaio
Anastasis Kratsios
G. Pammer
    OOD
ArXivPDFHTML

Papers citing "Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer"

16 / 16 papers shown
Title
Kolmogorov-Arnold Networks: Approximation and Learning Guarantees for Functions and their Derivatives
Kolmogorov-Arnold Networks: Approximation and Learning Guarantees for Functions and their Derivatives
Anastasis Kratsios
Takashi Furuya
27
0
0
21 Apr 2025
Deep Kalman Filters Can Filter
Deep Kalman Filters Can Filter
Blanka Hovart
Anastasis Kratsios
Yannick Limmer
Xuwei Yang
45
1
0
31 Dec 2024
Neural Operators Can Play Dynamic Stackelberg Games
Neural Operators Can Play Dynamic Stackelberg Games
Guillermo Alvarez
Ibrahim Ekren
Anastasis Kratsios
Xuwei Yang
33
0
0
14 Nov 2024
Neural Spacetimes for DAG Representation Learning
Neural Spacetimes for DAG Representation Learning
Haitz Sáez de Ocáriz Borde
Anastasis Kratsios
Marc T. Law
Xiaowen Dong
Michael Bronstein
CML
46
0
0
25 Aug 2024
Neural networks in non-metric spaces
Neural networks in non-metric spaces
Luca Galimberti
37
1
0
13 Jun 2024
Mixture of Experts Soften the Curse of Dimensionality in Operator
  Learning
Mixture of Experts Soften the Curse of Dimensionality in Operator Learning
Anastasis Kratsios
Takashi Furuya
Jose Antonio Lara Benitez
Matti Lassas
Maarten V. de Hoop
39
13
0
13 Apr 2024
Approximation Rates and VC-Dimension Bounds for (P)ReLU MLP Mixture of
  Experts
Approximation Rates and VC-Dimension Bounds for (P)ReLU MLP Mixture of Experts
Anastasis Kratsios
Haitz Sáez de Ocáriz Borde
Takashi Furuya
Marc T. Law
MoE
41
1
0
05 Feb 2024
Memory of recurrent networks: Do we compute it right?
Memory of recurrent networks: Do we compute it right?
Giovanni Ballarin
Lyudmila Grigoryeva
Juan-Pablo Ortega
15
4
0
02 May 2023
A Brief Survey on the Approximation Theory for Sequence Modelling
A Brief Survey on the Approximation Theory for Sequence Modelling
Hao Jiang
Qianxiao Li
Zhong Li
Shida Wang
AI4TS
25
12
0
27 Feb 2023
Generative Ornstein-Uhlenbeck Markets via Geometric Deep Learning
Generative Ornstein-Uhlenbeck Markets via Geometric Deep Learning
Anastasis Kratsios
Cody B. Hyndman
13
0
0
17 Feb 2023
Out-of-distributional risk bounds for neural operators with applications
  to the Helmholtz equation
Out-of-distributional risk bounds for neural operators with applications to the Helmholtz equation
Jose Antonio Lara Benitez
Takashi Furuya
F. Faucher
Anastasis Kratsios
X. Tricoche
Maarten V. de Hoop
34
16
0
27 Jan 2023
Chaotic Hedging with Iterated Integrals and Neural Networks
Chaotic Hedging with Iterated Integrals and Neural Networks
Ariel Neufeld
Philipp Schmocker
23
10
0
21 Sep 2022
Small Transformers Compute Universal Metric Embeddings
Small Transformers Compute Universal Metric Embeddings
Anastasis Kratsios
Valentin Debarnot
Ivan Dokmanić
54
11
0
14 Sep 2022
Universal Approximation Under Constraints is Possible with Transformers
Universal Approximation Under Constraints is Possible with Transformers
Anastasis Kratsios
Behnoosh Zamanlooy
Tianlin Liu
Ivan Dokmanić
51
26
0
07 Oct 2021
Universal Regular Conditional Distributions
Universal Regular Conditional Distributions
Anastasis Kratsios
13
3
0
17 May 2021
Optimal Stopping via Randomized Neural Networks
Optimal Stopping via Randomized Neural Networks
Calypso Herrera
Florian Krack
P. Ruyssen
Josef Teichmann
38
37
0
28 Apr 2021
1