ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.13323
  4. Cited By
Constructing coarse-scale bifurcation diagrams from spatio-temporal
  observations of microscopic simulations: A parsimonious machine learning
  approach

Constructing coarse-scale bifurcation diagrams from spatio-temporal observations of microscopic simulations: A parsimonious machine learning approach

31 January 2022
Evangelos Galaris
Gianluca Fabiani
I. Gallos
Ioannis G. Kevrekidis
Constantinos Siettos
    AI4CE
ArXivPDFHTML

Papers citing "Constructing coarse-scale bifurcation diagrams from spatio-temporal observations of microscopic simulations: A parsimonious machine learning approach"

17 / 17 papers shown
Title
Enabling Local Neural Operators to perform Equation-Free System-Level Analysis
Enabling Local Neural Operators to perform Equation-Free System-Level Analysis
Gianluca Fabiani
H. Vandecasteele
S. Goswami
Constantinos Siettos
Ioannis G. Kevrekidis
50
0
0
05 May 2025
GoRINNs: Godunov-Riemann Informed Neural Networks for Learning
  Hyperbolic Conservation Laws
GoRINNs: Godunov-Riemann Informed Neural Networks for Learning Hyperbolic Conservation Laws
Dimitrios G. Patsatzis
Mario di Bernardo
L. Russo
Constantinos Siettos
AI4CE
26
1
0
29 Oct 2024
Stability Analysis of Physics-Informed Neural Networks for Stiff Linear
  Differential Equations
Stability Analysis of Physics-Informed Neural Networks for Stiff Linear Differential Equations
Gianluca Fabiani
Erik Bollt
Constantinos Siettos
A. Yannacopoulos
26
0
0
27 Aug 2024
Data-Driven Stochastic Closure Modeling via Conditional Diffusion Model and Neural Operator
Data-Driven Stochastic Closure Modeling via Conditional Diffusion Model and Neural Operator
Xinghao Dong
Chuanqi Chen
Jin-Long Wu
DiffM
AI4CE
41
5
0
06 Aug 2024
Active search for Bifurcations
Active search for Bifurcations
Y. M. Psarellis
T. Sapsis
Ioannis G. Kevrekidis
20
0
0
17 Jun 2024
RandONet: Shallow-Networks with Random Projections for learning linear
  and nonlinear operators
RandONet: Shallow-Networks with Random Projections for learning linear and nonlinear operators
Gianluca Fabiani
Ioannis G. Kevrekidis
Constantinos Siettos
A. Yannacopoulos
14
10
0
08 Jun 2024
Solving partial differential equations with sampled neural networks
Solving partial differential equations with sampled neural networks
Chinmay Datar
Taniya Kapoor
Abhishek Chandra
Qing Sun
Iryna Burak
Erik Lien Bolager
Anna Veselovska
Massimo Fornasier
Felix Dietrich
35
1
0
31 May 2024
A physics-informed neural network method for the approximation of slow
  invariant manifolds for the general class of stiff systems of ODEs
A physics-informed neural network method for the approximation of slow invariant manifolds for the general class of stiff systems of ODEs
Dimitrios G. Patsatzis
Lucia Russo
Constantinos Siettos
PINN
18
1
0
18 Mar 2024
Tipping Points of Evolving Epidemiological Networks: Machine
  Learning-Assisted, Data-Driven Effective Modeling
Tipping Points of Evolving Epidemiological Networks: Machine Learning-Assisted, Data-Driven Effective Modeling
N. Evangelou
Tianqi Cui
J. M. Bello-Rivas
Alexei Makeev
Ioannis G. Kevrekidis
17
1
0
01 Nov 2023
Machine Learning for the identification of phase-transitions in
  interacting agent-based systems: a Desai-Zwanzig example
Machine Learning for the identification of phase-transitions in interacting agent-based systems: a Desai-Zwanzig example
N. Evangelou
Dimitrios G. Giovanis
George A. Kevrekidis
G. Pavliotis
Ioannis G. Kevrekidis
11
0
0
29 Oct 2023
AI-Aristotle: A Physics-Informed framework for Systems Biology Gray-Box
  Identification
AI-Aristotle: A Physics-Informed framework for Systems Biology Gray-Box Identification
Nazanin Ahmadi Daryakenari
Mario De Florio
K. Shukla
George Karniadakis
30
31
0
29 Sep 2023
Tasks Makyth Models: Machine Learning Assisted Surrogates for Tipping
  Points
Tasks Makyth Models: Machine Learning Assisted Surrogates for Tipping Points
Gianluca Fabiani
N. Evangelou
Tianqi Cui
J. M. Bello-Rivas
Cristina P. Martin-Linares
Constantinos Siettos
Ioannis G. Kevrekidis
25
2
0
25 Sep 2023
Adaptive Uncertainty-Guided Model Selection for Data-Driven PDE
  Discovery
Adaptive Uncertainty-Guided Model Selection for Data-Driven PDE Discovery
Pongpisit Thanasutives
Takashi Morita
M. Numao
Ken-ichi Fukui
17
2
0
20 Aug 2023
Sampling weights of deep neural networks
Sampling weights of deep neural networks
Erik Lien Bolager
Iryna Burak
Chinmay Datar
Q. Sun
Felix Dietrich
BDL
UQCV
11
16
0
29 Jun 2023
Data-driven modelling of brain activity using neural networks, Diffusion
  Maps, and the Koopman operator
Data-driven modelling of brain activity using neural networks, Diffusion Maps, and the Koopman operator
I. Gallos
Daniel Lehmberg
Felix Dietrich
Constantinos Siettos
12
7
0
24 Apr 2023
Data-driven Control of Agent-based Models: an Equation/Variable-free
  Machine Learning Approach
Data-driven Control of Agent-based Models: an Equation/Variable-free Machine Learning Approach
Dimitrios G. Patsatzis
Lucia Russo
Ioannis G. Kevrekidis
Constantinos Siettos
11
15
0
12 Jul 2022
Recurrent Neural Networks for Dynamical Systems: Applications to
  Ordinary Differential Equations, Collective Motion, and Hydrological Modeling
Recurrent Neural Networks for Dynamical Systems: Applications to Ordinary Differential Equations, Collective Motion, and Hydrological Modeling
Yonggi Park
Kelum Gajamannage
D. Jayathilake
Erik Bollt
AI4CE
4
18
0
14 Feb 2022
1