Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.00821
Cited By
Optimizing Sequential Experimental Design with Deep Reinforcement Learning
2 February 2022
Tom Blau
Edwin V. Bonilla
Iadine Chadès
Amir Dezfouli
BDL
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimizing Sequential Experimental Design with Deep Reinforcement Learning"
21 / 21 papers shown
Title
Dynamic Angle Selection in X-Ray CT: A Reinforcement Learning Approach to Optimal Stopping
Tianyuan Wang
46
0
0
16 Mar 2025
PABBO: Preferential Amortized Black-Box Optimization
Xinyu Zhang
Daolang Huang
Samuel Kaski
Julien Martinelli
34
0
0
02 Mar 2025
Bayesian Adaptive Calibration and Optimal Design
Rafael Oliveira
Dino Sejdinovic
David Howard
Edwin Bonilla
106
0
0
20 Jan 2025
Amortized Bayesian Experimental Design for Decision-Making
Daolang Huang
Yujia Guo
Luigi Acerbi
Samuel Kaski
44
2
0
03 Jan 2025
Bayesian Experimental Design via Contrastive Diffusions
Jacopo Iollo
Christophe Heinkelé
Pierre Alliez
Florence Forbes
26
0
0
15 Oct 2024
Amortized Active Causal Induction with Deep Reinforcement Learning
Yashas Annadani
P. Tigas
Stefan Bauer
Adam Foster
29
0
0
26 May 2024
Amortized nonmyopic active search via deep imitation learning
Quan Nguyen
Anindya Sarkar
Roman Garnett
19
0
0
23 May 2024
Nesting Particle Filters for Experimental Design in Dynamical Systems
Sahel Iqbal
Adrien Corenflos
Simo Särkkä
Hany Abdulsamad
23
2
0
12 Feb 2024
PASOA- PArticle baSed Bayesian Optimal Adaptive design
Jacopo Iollo
Christophe Heinkelé
Pierre Alliez
Florence Forbes
11
1
0
11 Feb 2024
Bayesian Active Learning in the Presence of Nuisance Parameters
Sabina J. Sloman
Ayush Bharti
Julien Martinelli
Samuel Kaski
19
3
0
23 Oct 2023
Amortised Design Optimization for Item Response Theory
Antti Keurulainen
Isak Westerlund
Oskar Keurulainen
Andrew Howes
13
0
0
19 Jul 2023
Amortised Experimental Design and Parameter Estimation for User Models of Pointing
Antti Keurulainen
Isak Westerlund
Oskar Keurulainen
Andrew Howes
10
7
0
19 Jul 2023
Variational Sequential Optimal Experimental Design using Reinforcement Learning
Wanggang Shen
Jiayuan Dong
Xun Huan
12
3
0
17 Jun 2023
Statistically Efficient Bayesian Sequential Experiment Design via Reinforcement Learning with Cross-Entropy Estimators
Tom Blau
Iadine Chadès
Amir Dezfouli
Daniel M. Steinberg
Edwin V. Bonilla
11
1
0
29 May 2023
Online simulator-based experimental design for cognitive model selection
Alexander Aushev
Aini Putkonen
Grégoire Clarté
Suyog H. Chandramouli
Luigi Acerbi
Samuel Kaski
Andrew Howes
22
2
0
03 Mar 2023
Modern Bayesian Experimental Design
Tom Rainforth
Adam Foster
Desi R. Ivanova
Freddie Bickford-Smith
21
75
0
28 Feb 2023
Differentiable Multi-Target Causal Bayesian Experimental Design
Yashas Annadani
P. Tigas
Desi R. Ivanova
Andrew Jesson
Y. Gal
Adam Foster
Stefan Bauer
BDL
CML
18
13
0
21 Feb 2023
GFlowNets for AI-Driven Scientific Discovery
Moksh Jain
T. Deleu
Jason S. Hartford
Cheng-Hao Liu
Alex Hernandez-Garcia
Yoshua Bengio
AI4CE
21
44
0
01 Feb 2023
Experimental Design for Multi-Channel Imaging via Task-Driven Feature Selection
Stefano B. Blumberg
Paddy J. Slator
Daniel C. Alexander
24
1
0
13 Oct 2022
Policy-Based Bayesian Experimental Design for Non-Differentiable Implicit Models
Vincent Lim
Ellen R. Novoseller
Jeffrey Ichnowski
Huang Huang
Ken Goldberg
OffRL
19
10
0
08 Mar 2022
Optimal sequential decision making with probabilistic digital twins
C. Agrell
Kristina Rognlien Dahl
A. Hafver
19
7
0
12 Mar 2021
1