Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.01181
Cited By
Make Some Noise: Reliable and Efficient Single-Step Adversarial Training
2 February 2022
Pau de Jorge
Adel Bibi
Riccardo Volpi
Amartya Sanyal
Philip H. S. Torr
Grégory Rogez
P. Dokania
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Make Some Noise: Reliable and Efficient Single-Step Adversarial Training"
6 / 6 papers shown
Title
On Using Certified Training towards Empirical Robustness
Alessandro De Palma
Serge Durand
Zakaria Chihani
François Terrier
Caterina Urban
OOD
AAML
25
1
0
02 Oct 2024
ADAPT to Robustify Prompt Tuning Vision Transformers
Masih Eskandar
Tooba Imtiaz
Zifeng Wang
Jennifer Dy
VPVLM
VLM
AAML
31
0
0
19 Mar 2024
Catastrophic Overfitting: A Potential Blessing in Disguise
Mengnan Zhao
Lihe Zhang
Yuqiu Kong
Baocai Yin
AAML
31
1
0
28 Feb 2024
A Random Ensemble of Encrypted Vision Transformers for Adversarially Robust Defense
Ryota Iijima
Sayaka Shiota
Hitoshi Kiya
13
6
0
11 Feb 2024
Sharpness-Aware Graph Collaborative Filtering
Huiyuan Chen
Chin-Chia Michael Yeh
Yujie Fan
Yan Zheng
Junpeng Wang
Vivian Lai
Mahashweta Das
Hao Yang
8
5
0
18 Jul 2023
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
253
3,102
0
04 Nov 2016
1