ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.02541
  4. Cited By
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular
  Potentials

TorchMD-NET: Equivariant Transformers for Neural Network based Molecular Potentials

5 February 2022
Philipp Thölke
Gianni de Fabritiis
    AI4CE
ArXivPDFHTML

Papers citing "TorchMD-NET: Equivariant Transformers for Neural Network based Molecular Potentials"

50 / 112 papers shown
Title
Optimal Invariant Bases for Atomistic Machine Learning
Optimal Invariant Bases for Atomistic Machine Learning
Alice Allen
Emily Shinkle
Roxana Bujack
Nicholas Lubbers
37
0
0
30 Mar 2025
Pre-training Graph Neural Networks with Structural Fingerprints for Materials Discovery
Shuyi Jia
Shitij Govil
Manav Ramprasad
Victor Fung
AI4CE
64
1
0
03 Mar 2025
A Survey of Graph Transformers: Architectures, Theories and Applications
A Survey of Graph Transformers: Architectures, Theories and Applications
Chaohao Yuan
Kangfei Zhao
Ercan Engin Kuruoglu
Liang Wang
Tingyang Xu
Wenbing Huang
Deli Zhao
Hong Cheng
Yu Rong
51
4
0
23 Feb 2025
MolSpectra: Pre-training 3D Molecular Representation with Multi-modal Energy Spectra
MolSpectra: Pre-training 3D Molecular Representation with Multi-modal Energy Spectra
Liang Wang
Shaozhen Liu
Yu Rong
Deli Zhao
Qiang Liu
Shu Wu
Liang Wang
MedIm
63
2
0
22 Feb 2025
Equivariant Masked Position Prediction for Efficient Molecular Representation
Equivariant Masked Position Prediction for Efficient Molecular Representation
Junyi An
C. Qu
Yun-Fei Shi
XinHao Liu
Qianwei Tang
Fenglei Cao
Yuan Qi
35
0
0
12 Feb 2025
A Periodic Bayesian Flow for Material Generation
A Periodic Bayesian Flow for Material Generation
Hanlin Wu
Yuxuan Song
Jingjing Gong
Ziyao Cao
Y. Ouyang
Jianbing Zhang
Hao Zhou
Wei-Ying Ma
Jingjing Liu
DiffM
64
1
0
04 Feb 2025
OpenQDC: Open Quantum Data Commons
OpenQDC: Open Quantum Data Commons
Cristian Gabellini
Nikhil Shenoy
Stephan Thaler
Semih Cantürk
Daniel McNeela
Dominique Beaini
Michael Bronstein
Prudencio Tossou
AI4CE
75
1
0
29 Nov 2024
Equivariant Graph Network Approximations of High-Degree Polynomials for
  Force Field Prediction
Equivariant Graph Network Approximations of High-Degree Polynomials for Force Field Prediction
Zhao Xu
Haiyang Yu
Montgomery Bohde
Shuiwang Ji
40
0
0
06 Nov 2024
Harmformer: Harmonic Networks Meet Transformers for Continuous
  Roto-Translation Equivariance
Harmformer: Harmonic Networks Meet Transformers for Continuous Roto-Translation Equivariance
Tomáš Karella
Adam Harmanec
J. Kotera
Jan Blažek
F. Šroubek
36
1
0
06 Nov 2024
Bridging Geometric States via Geometric Diffusion Bridge
Bridging Geometric States via Geometric Diffusion Bridge
Shengjie Luo
Yixian Xu
Di He
Shuxin Zheng
Tie-Yan Liu
Liwei Wang
32
0
0
31 Oct 2024
The Importance of Being Scalable: Improving the Speed and Accuracy of
  Neural Network Interatomic Potentials Across Chemical Domains
The Importance of Being Scalable: Improving the Speed and Accuracy of Neural Network Interatomic Potentials Across Chemical Domains
Eric Qu
Aditi S. Krishnapriyan
LRM
26
10
0
31 Oct 2024
ET-Flow: Equivariant Flow-Matching for Molecular Conformer Generation
ET-Flow: Equivariant Flow-Matching for Molecular Conformer Generation
Majdi Hassan
Nikhil Shenoy
Jungyoon Lee
Hannes Stärk
Stephan Thaler
Dominique Beaini
27
6
0
29 Oct 2024
Pushing the Limits of All-Atom Geometric Graph Neural Networks:
  Pre-Training, Scaling and Zero-Shot Transfer
Pushing the Limits of All-Atom Geometric Graph Neural Networks: Pre-Training, Scaling and Zero-Shot Transfer
Zihan Pengmei
Zhengyuan Shen
Zichen Wang
Marcus Collins
Huzefa Rangwala
AI4CE
21
2
0
29 Oct 2024
Relaxed Equivariance via Multitask Learning
Relaxed Equivariance via Multitask Learning
Ahmed A. A. Elhag
T. Konstantin Rusch
Francesco Di Giovanni
Michael Bronstein
42
2
0
23 Oct 2024
CrystalX: Ultra-Precision Crystal Structure Resolution and Error
  Correction Using Deep Learning
CrystalX: Ultra-Precision Crystal Structure Resolution and Error Correction Using Deep Learning
Kaipeng Zheng
Weiran Huang
Wanli Ouyang
Han-Sen Zhong
Y. Li
29
0
0
17 Oct 2024
Molecular Dynamics and Machine Learning Unlock Possibilities in Beauty
  Design -- A Perspective
Molecular Dynamics and Machine Learning Unlock Possibilities in Beauty Design -- A Perspective
Yuzhi Xu
Haowei Ni
Qinhui Gao
Chia-Hua Chang
Yanran Huo
...
Yike Zhang
Radu Grovu
Min He
John Z. H. Zhang
Yuanqing Wang
AI4CE
29
0
0
08 Oct 2024
REBIND: Enhancing ground-state molecular conformation via force-based
  graph rewiring
REBIND: Enhancing ground-state molecular conformation via force-based graph rewiring
Taewon Kim
Hyunjin Seo
Sungsoo Ahn
Eunho Yang
AI4CE
32
1
0
04 Oct 2024
Geometric Representation Condition Improves Equivariant Molecule Generation
Geometric Representation Condition Improves Equivariant Molecule Generation
Zian Li
Cai Zhou
Xiyuan Wang
Xingang Peng
Muhan Zhang
42
1
0
04 Oct 2024
On the design space between molecular mechanics and machine learning
  force fields
On the design space between molecular mechanics and machine learning force fields
Yuanqing Wang
Kenichiro Takaba
Michael S. Chen
Marcus Wieder
Yuzhi Xu
...
Kyunghyun Cho
Joe G. Greener
Peter K. Eastman
Stefano Martiniani
M. Tuckerman
AI4CE
37
4
0
03 Sep 2024
Force-Guided Bridge Matching for Full-Atom Time-Coarsened Dynamics of
  Peptides
Force-Guided Bridge Matching for Full-Atom Time-Coarsened Dynamics of Peptides
Ziyang Yu
Wenbing Huang
Yang Liu
OOD
AI4CE
32
1
0
27 Aug 2024
Geometry Informed Tokenization of Molecules for Language Model
  Generation
Geometry Informed Tokenization of Molecules for Language Model Generation
Xiner Li
Limei Wang
Youzhi Luo
Carl N. Edwards
Shurui Gui
Yuchao Lin
Heng Ji
Shuiwang Ji
29
6
0
19 Aug 2024
PlayMolecule pKAce: Small Molecule Protonation through Equivariant
  Neural Networks
PlayMolecule pKAce: Small Molecule Protonation through Equivariant Neural Networks
Nikolai Schapin
Maciej Majewski
Mariona Torrens-Fontanals
Gianni de Fabritiis
19
1
0
15 Jul 2024
On Machine Learning Approaches for Protein-Ligand Binding Affinity
  Prediction
On Machine Learning Approaches for Protein-Ligand Binding Affinity Prediction
Nikolai Schapin
Carles Navarro
Albert Bou
Gianni de Fabritiis
AI4CE
20
0
0
15 Jul 2024
Pre-training with Fractional Denoising to Enhance Molecular Property
  Prediction
Pre-training with Fractional Denoising to Enhance Molecular Property Prediction
Yuyan Ni
Shikun Feng
Xin Hong
Yuancheng Sun
Wei-Ying Ma
Zhiming Ma
Qiwei Ye
Yanyan Lan
AI4CE
36
10
0
14 Jul 2024
FreeCG: Free the Design Space of Clebsch-Gordan Transform for Machine
  Learning Force Fields
FreeCG: Free the Design Space of Clebsch-Gordan Transform for Machine Learning Force Fields
Shihao Shao
Haoran Geng
Zun Wang
Qinghua Cui
3DV
35
0
0
02 Jul 2024
GeoMFormer: A General Architecture for Geometric Molecular
  Representation Learning
GeoMFormer: A General Architecture for Geometric Molecular Representation Learning
Tianlang Chen
Shengjie Luo
Di He
Shuxin Zheng
Tie-Yan Liu
Liwei Wang
AI4CE
36
5
0
24 Jun 2024
Molecule Graph Networks with Many-body Equivariant Interactions
Molecule Graph Networks with Many-body Equivariant Interactions
Zetian Mao
Jiawen Li
Chen Liang
Diptesh Das
Masato Sumita
Koji Tsuda
Kelin Xia
Koji Tsuda
35
1
0
19 Jun 2024
LLMatDesign: Autonomous Materials Discovery with Large Language Models
LLMatDesign: Autonomous Materials Discovery with Large Language Models
Shuyi Jia
Chao Zhang
Victor Fung
46
9
0
19 Jun 2024
Equivariance via Minimal Frame Averaging for More Symmetries and
  Efficiency
Equivariance via Minimal Frame Averaging for More Symmetries and Efficiency
Yuchao Lin
Jacob Helwig
Shurui Gui
Shuiwang Ji
39
7
0
11 Jun 2024
Infusing Self-Consistency into Density Functional Theory Hamiltonian
  Prediction via Deep Equilibrium Models
Infusing Self-Consistency into Density Functional Theory Hamiltonian Prediction via Deep Equilibrium Models
Zun Wang
Chang-Shu Liu
Nianlong Zou
He Zhang
Xinran Wei
Lin Huang
Lijun Wu
Bin Shao
36
1
0
06 Jun 2024
Neural Polarization: Toward Electron Density for Molecules by Extending
  Equivariant Networks
Neural Polarization: Toward Electron Density for Molecules by Extending Equivariant Networks
Bumju Kwak
Jeonghee Jo
42
0
0
01 Jun 2024
SE3Set: Harnessing equivariant hypergraph neural networks for molecular
  representation learning
SE3Set: Harnessing equivariant hypergraph neural networks for molecular representation learning
Hongfei Wu
Lijun Wu
Guoqing Liu
Zhirong Liu
Bin Shao
Zun Wang
35
1
0
26 May 2024
Higher-Rank Irreducible Cartesian Tensors for Equivariant Message
  Passing
Higher-Rank Irreducible Cartesian Tensors for Equivariant Message Passing
Viktor Zaverkin
Francesco Alesiani
Takashi Maruyama
Federico Errica
Henrik Christiansen
Makoto Takamoto
Nicolas Weber
Mathias Niepert
41
5
0
23 May 2024
UniCorn: A Unified Contrastive Learning Approach for Multi-view
  Molecular Representation Learning
UniCorn: A Unified Contrastive Learning Approach for Multi-view Molecular Representation Learning
Shikun Feng
Yuyan Ni
Minghao Li
Yanwen Huang
Zhiming Ma
Wei-Ying Ma
Yanyan Lan
SSL
41
7
0
15 May 2024
Self-Consistency Training for Density-Functional-Theory Hamiltonian
  Prediction
Self-Consistency Training for Density-Functional-Theory Hamiltonian Prediction
He Zhang
Chang-Shu Liu
Zun Wang
Xinran Wei
Siyuan Liu
Nanning Zheng
Bin Shao
Tie-Yan Liu
43
4
0
14 Mar 2024
Generalizing Denoising to Non-Equilibrium Structures Improves
  Equivariant Force Fields
Generalizing Denoising to Non-Equilibrium Structures Improves Equivariant Force Fields
Yi-Lun Liao
Tess E. Smidt
Abhishek Das
DiffM
AI4CE
32
12
0
14 Mar 2024
A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications
A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications
Jiaqi Han
Jiacheng Cen
Liming Wu
Zongzhao Li
Xiangzhe Kong
...
Zhewei Wei
Deli Zhao
Yu Rong
Wenbing Huang
Wenbing Huang
AI4CE
34
20
0
01 Mar 2024
TorchMD-Net 2.0: Fast Neural Network Potentials for Molecular
  Simulations
TorchMD-Net 2.0: Fast Neural Network Potentials for Molecular Simulations
Raúl P. Peláez
Guillem Simeon
Raimondas Galvelis
Antonio Mirarchi
Peter K. Eastman
Stefan Doerr
Philipp Thölke
T. Markland
Gianni de Fabritiis
AI4CE
30
12
0
27 Feb 2024
Clifford Group Equivariant Simplicial Message Passing Networks
Clifford Group Equivariant Simplicial Message Passing Networks
Cong Liu
David Ruhe
Floor Eijkelboom
Patrick Forré
21
13
0
15 Feb 2024
Triplet Interaction Improves Graph Transformers: Accurate Molecular
  Graph Learning with Triplet Graph Transformers
Triplet Interaction Improves Graph Transformers: Accurate Molecular Graph Learning with Triplet Graph Transformers
Md Shamim Hussain
Mohammed J. Zaki
D. Subramanian
ViT
26
5
0
07 Feb 2024
On the Completeness of Invariant Geometric Deep Learning Models
On the Completeness of Invariant Geometric Deep Learning Models
Zian Li
Xiyuan Wang
Shijia Kang
Muhan Zhang
31
2
0
07 Feb 2024
A Multi-Grained Symmetric Differential Equation Model for Learning
  Protein-Ligand Binding Dynamics
A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics
Shengchao Liu
Weitao Du
Yanjing Li
Zhuoxinran Li
Vignesh C. Bhethanabotla
...
O. Yaghi
C. Borgs
A. Anandkumar
Hongyu Guo
J. Chayes
AI4CE
32
4
0
26 Jan 2024
Enabling Efficient Equivariant Operations in the Fourier Basis via Gaunt
  Tensor Products
Enabling Efficient Equivariant Operations in the Fourier Basis via Gaunt Tensor Products
Shengjie Luo
Tianlang Chen
Aditi S. Krishnapriyan
25
19
0
18 Jan 2024
Predicting and Interpreting Energy Barriers of Metallic Glasses with
  Graph Neural Networks
Predicting and Interpreting Energy Barriers of Metallic Glasses with Graph Neural Networks
Haoyu Li
Shichang Zhang
Longwen Tang
Mathieu Bauchy
Yizhou Sun
AI4CE
40
1
0
08 Dec 2023
Sliced Denoising: A Physics-Informed Molecular Pre-Training Method
Sliced Denoising: A Physics-Informed Molecular Pre-Training Method
Yuyan Ni
Shikun Feng
Wei-Ying Ma
Zhiming Ma
Yanyan Lan
DiffM
AI4CE
27
10
0
03 Nov 2023
Investigating the Behavior of Diffusion Models for Accelerating
  Electronic Structure Calculations
Investigating the Behavior of Diffusion Models for Accelerating Electronic Structure Calculations
D. Rothchild
Andrew S. Rosen
Eric Taw
Connie Robinson
Joseph E. Gonzalez
Aditi S. Krishnapriyan
DiffM
24
2
0
02 Nov 2023
Role of Structural and Conformational Diversity for Machine Learning
  Potentials
Role of Structural and Conformational Diversity for Machine Learning Potentials
Nikhil Shenoy
Prudencio Tossou
Emmanuel Noutahi
Hadrien Mary
Dominique Beaini
Jiarui Ding
AI4CE
17
0
0
30 Oct 2023
Navigating protein landscapes with a machine-learned transferable
  coarse-grained model
Navigating protein landscapes with a machine-learned transferable coarse-grained model
N. Charron
Felix Musil
Andrea Guljas
Yaoyi Chen
Klara Bonneau
...
B. Husic
Ankit Patel
Gianni de Fabritiis
Frank Noé
C. Clementi
AI4CE
16
13
0
27 Oct 2023
From Molecules to Materials: Pre-training Large Generalizable Models for
  Atomic Property Prediction
From Molecules to Materials: Pre-training Large Generalizable Models for Atomic Property Prediction
Nima Shoghi
Adeesh Kolluru
John R. Kitchin
Zachary W. Ulissi
C. L. Zitnick
Brandon M. Wood
AI4CE
22
32
0
25 Oct 2023
Learning Interatomic Potentials at Multiple Scales
Learning Interatomic Potentials at Multiple Scales
Xiang Fu
Albert Musaelian
Anders Johansson
Tommi Jaakkola
Boris Kozinsky
27
2
0
20 Oct 2023
123
Next