Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.02541
Cited By
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular Potentials
5 February 2022
Philipp Thölke
Gianni de Fabritiis
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"TorchMD-NET: Equivariant Transformers for Neural Network based Molecular Potentials"
50 / 112 papers shown
Title
Towards equilibrium molecular conformation generation with GFlowNets
Alexandra Volokhova
Michal Koziarski
Alex Hernández-García
Cheng-Hao Liu
Santiago Miret
Pablo Lemos
Luca Thiede
Zichao Yan
Alán Aspuru-Guzik
Yoshua Bengio
24
9
0
20 Oct 2023
Equivariant Transformer is all you need
Akio Tomiya
Yuki Nagai
AI4CE
6
6
0
20 Oct 2023
ETDock: A Novel Equivariant Transformer for Protein-Ligand Docking
Yi Yi
Xu Wan
Yatao Bian
Ou-Yang Le
Peilin Zhao
13
3
0
12 Oct 2023
OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials
Peter K. Eastman
Raimondas Galvelis
Raúl P. Peláez
C. Abreu
Stephen E. Farr
...
Yuanqing Wang
Ivy Zhang
J. Chodera
Gianni de Fabritiis
T. Markland
AI4CE
VLM
28
36
0
04 Oct 2023
EGraFFBench: Evaluation of Equivariant Graph Neural Network Force Fields for Atomistic Simulations
Vaibhav Bihani
Utkarsh Pratiush
Sajid Mannan
Tao Du
Zhimin Chen
Santiago Miret
Matthieu Micoulaut
M. Smedskjaer
Sayan Ranu
N. M. A. Krishnan
24
19
0
03 Oct 2023
Navigating the Design Space of Equivariant Diffusion-Based Generative Models for De Novo 3D Molecule Generation
Tuan Le
Julian Cremer
Frank Noé
Djork-Arné Clevert
Kristof T. Schütt
DiffM
27
25
0
29 Sep 2023
From Peptides to Nanostructures: A Euclidean Transformer for Fast and Stable Machine Learned Force Fields
J. Frank
Oliver T. Unke
Klaus-Robert Muller
Stefan Chmiela
24
3
0
21 Sep 2023
Latent Representation and Simulation of Markov Processes via Time-Lagged Information Bottleneck
Marco Federici
Patrick Forré
Ryota Tomioka
Bastiaan S. Veeling
16
3
0
13 Sep 2023
3D Denoisers are Good 2D Teachers: Molecular Pretraining via Denoising and Cross-Modal Distillation
Sungjun Cho
Dae-Woong Jeong
Sung Moon Ko
Jinwoo Kim
Sehui Han
Seunghoon Hong
Honglak Lee
Moontae Lee
AI4CE
DiffM
30
1
0
08 Sep 2023
PolyGET: Accelerating Polymer Simulations by Accurate and Generalizable Forcefield with Equivariant Transformer
Rui Feng
Huan Tran
Aubrey Toland
Binghong Chen
Qi Zhu
R. Ramprasad
Chao Zhang
11
1
0
01 Sep 2023
May the Force be with You: Unified Force-Centric Pre-Training for 3D Molecular Conformations
Rui Feng
Qi Zhu
Huan Tran
Binghong Chen
Aubrey Toland
R. Ramprasad
Chao Zhang
AI4CE
28
9
0
24 Aug 2023
Crystal Structure Prediction by Joint Equivariant Diffusion
Rui Jiao
Wen-bing Huang
Peijia Lin
Jiaqi Han
Pin Chen
Yutong Lu
Yang Liu
DiffM
19
59
0
30 Jul 2023
Fractional Denoising for 3D Molecular Pre-training
Shi Feng
Yuyan Ni
Yanyan Lan
Zhiming Ma
Wei-Ying Ma
DiffM
AI4CE
42
25
0
20 Jul 2023
Multimodal Molecular Pretraining via Modality Blending
Qiying Yu
Yudi Zhang
Yuyan Ni
Shi Feng
Yanyan Lan
Hao Zhou
Jingjing Liu
21
13
0
12 Jul 2023
EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-Degree Representations
Yidong Liao
Brandon M. Wood
Abhishek Das
Tess E. Smidt
24
131
0
21 Jun 2023
Top-down machine learning of coarse-grained protein force-fields
Carles Navarro
Maciej Majewski
Gianni de Fabritiis
AI4CE
13
11
0
20 Jun 2023
QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
Haiyang Yu
Meng Liu
Youzhi Luo
A. Strasser
X. Qian
Xiaoning Qian
Shuiwang Ji
13
20
0
15 Jun 2023
MUBen: Benchmarking the Uncertainty of Molecular Representation Models
Yinghao Li
Lingkai Kong
Yuanqi Du
Yue Yu
Yuchen Zhuang
Wenhao Mu
Chao Zhang
22
9
0
14 Jun 2023
TensorNet: Cartesian Tensor Representations for Efficient Learning of Molecular Potentials
Guillem Simeon
Gianni de Fabritiis
24
45
0
10 Jun 2023
Scaling Spherical CNNs
Carlos Esteves
Jean-Jacques E. Slotine
A. Makadia
GNN
LRM
19
13
0
08 Jun 2023
Generalist Equivariant Transformer Towards 3D Molecular Interaction Learning
Xiangzhe Kong
Wen-bing Huang
Yang Liu
20
13
0
02 Jun 2023
Smooth, exact rotational symmetrization for deep learning on point clouds
Sergey Pozdnyakov
Michele Ceriotti
3DPC
35
25
0
30 May 2023
Evaluation of the MACE Force Field Architecture: from Medicinal Chemistry to Materials Science
D. P. Kovács
Ilyes Batatia
E. Arany
Gábor Csányi
AI4CE
24
82
0
23 May 2023
Clifford Group Equivariant Neural Networks
David Ruhe
Johannes Brandstetter
Patrick Forré
24
34
0
18 May 2023
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
Alexandre Duval
Victor Schmidt
A. Garcia
Santiago Miret
Fragkiskos D. Malliaros
Yoshua Bengio
David Rolnick
20
53
0
28 Apr 2023
MUDiff: Unified Diffusion for Complete Molecule Generation
Chenqing Hua
Sitao Luan
Minkai Xu
Rex Ying
Jie Fu
Stefano Ermon
Doina Precup
DiffM
45
34
0
28 Apr 2023
Scaling the leading accuracy of deep equivariant models to biomolecular simulations of realistic size
Albert Musaelian
A. Johansson
Simon L. Batzner
Boris Kozinsky
27
48
0
20 Apr 2023
Dynamic Graph Representation Learning with Neural Networks: A Survey
Leshanshui Yang
Sébastien Adam
Clément Chatelain
AI4TS
AI4CE
28
14
0
12 Apr 2023
Highly Accurate Quantum Chemical Property Prediction with Uni-Mol+
Shuqi Lu
Zhifeng Gao
Di He
Linfeng Zhang
Guolin Ke
32
24
0
16 Mar 2023
Wigner kernels: body-ordered equivariant machine learning without a basis
Filippo Bigi
Sergey Pozdnyakov
Michele Ceriotti
32
15
0
07 Mar 2023
Denoise Pretraining on Nonequilibrium Molecules for Accurate and Transferable Neural Potentials
Yuyang Wang
Chang Xu
Zijie Li
A. Farimani
AAML
AI4CE
19
20
0
03 Mar 2023
Statistically Optimal Force Aggregation for Coarse-Graining Molecular Dynamics
Andreas Krämer
Aleksander E. P. Durumeric
N. Charron
Yaoyi Chen
C. Clementi
Frank Noé
AI4CE
12
20
0
14 Feb 2023
Is Distance Matrix Enough for Geometric Deep Learning?
Zian Li
Xiyuan Wang
Yinan Huang
Muhan Zhang
37
17
0
11 Feb 2023
Attending to Graph Transformers
Luis Muller
Mikhail Galkin
Christopher Morris
Ladislav Rampášek
44
85
0
08 Feb 2023
GPS++: Reviving the Art of Message Passing for Molecular Property Prediction
Dominic Masters
Josef Dean
Kerstin Klaser
Zhiyi Li
Sam Maddrell-Mander
...
D. Beker
Andrew Fitzgibbon
Shenyang Huang
Ladislav Rampášek
Dominique Beaini
28
8
0
06 Feb 2023
Molecular Geometry-aware Transformer for accurate 3D Atomic System modeling
Zheng Yuan
Yaoyun Zhang
Chuanqi Tan
Wei Wang
Feiran Huang
Songfang Huang
AI4CE
ViT
24
6
0
02 Feb 2023
Spatial Attention Kinetic Networks with E(n)-Equivariance
Yuanqing Wang
J. Chodera
27
15
0
21 Jan 2023
Machine Learning Coarse-Grained Potentials of Protein Thermodynamics
Maciej Majewski
Adriana Pérez
Philipp Thölke
Stefan Doerr
N. Charron
T. Giorgino
B. Husic
C. Clementi
Frank Noé
Gianni de Fabritiis
AI4CE
6
70
0
14 Dec 2022
PhAST: Physics-Aware, Scalable, and Task-specific GNNs for Accelerated Catalyst Design
Alexandre Duval
Victor Schmidt
Santiago Miret
Yoshua Bengio
Alex Hernández-García
David Rolnick
33
7
0
22 Nov 2022
Learning the shape of protein micro-environments with a holographic convolutional neural network
Michael N. Pun
Andrew Ivanov
Quinn Bellamy
Zachary Montague
Colin H. LaMont
P. Bradley
J. Otwinowski
Armita Nourmohammad
11
12
0
05 Nov 2022
Geometry-Complete Perceptron Networks for 3D Molecular Graphs
Alex Morehead
Jianlin Cheng
GNN
3DV
AI4CE
24
12
0
04 Nov 2022
Forces are not Enough: Benchmark and Critical Evaluation for Machine Learning Force Fields with Molecular Simulations
Xiang Fu
Zhenghao Wu
Wujie Wang
T. Xie
S. Keten
Rafael Gómez-Bombarelli
Tommi Jaakkola
30
136
0
13 Oct 2022
SPICE, A Dataset of Drug-like Molecules and Peptides for Training Machine Learning Potentials
Peter K. Eastman
P. Behara
David L. Dotson
Raimondas Galvelis
John E. Herr
...
J. Chodera
Benjamin P. Pritchard
Yuanqing Wang
Gianni de Fabritiis
T. Markland
27
105
0
21 Sep 2022
Graph Neural Networks for Molecules
Yuyang Wang
Zijie Li
A. Farimani
GNN
AI4CE
45
20
0
12 Sep 2022
Graph Neural Network with Local Frame for Molecular Potential Energy Surface
Xiyuan Wang
Muhan Zhang
30
9
0
01 Aug 2022
Energy-Motivated Equivariant Pretraining for 3D Molecular Graphs
Rui Jiao
Jiaqi Han
Wenbing Huang
Yu Rong
Yang Liu
AI4CE
30
45
0
18 Jul 2022
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs
Yi-Lun Liao
Tess E. Smidt
75
213
0
23 Jun 2022
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields
Ilyes Batatia
D. P. Kovács
G. Simm
Christoph Ortner
Gábor Csányi
36
441
0
15 Jun 2022
Pre-training via Denoising for Molecular Property Prediction
Sheheryar Zaidi
Michael Schaarschmidt
James Martens
Hyunjik Kim
Yee Whye Teh
Alvaro Sanchez-Gonzalez
Peter W. Battaglia
Razvan Pascanu
Jonathan Godwin
DiffM
AI4CE
15
121
0
31 May 2022
So3krates: Equivariant attention for interactions on arbitrary length-scales in molecular systems
J. Frank
Oliver T. Unke
Klaus-Robert Muller
11
44
0
28 May 2022
Previous
1
2
3
Next