ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.03091
  4. Cited By
Auto-Lambda: Disentangling Dynamic Task Relationships

Auto-Lambda: Disentangling Dynamic Task Relationships

7 February 2022
Shikun Liu
Stephen James
Andrew J. Davison
Edward Johns
ArXivPDFHTML

Papers citing "Auto-Lambda: Disentangling Dynamic Task Relationships"

6 / 56 papers shown
Title
Instruction-driven history-aware policies for robotic manipulations
Instruction-driven history-aware policies for robotic manipulations
Pierre-Louis Guhur
Shizhe Chen
Ricardo Garcia Pinel
Makarand Tapaswi
Ivan Laptev
Cordelia Schmid
LM&Ro
91
101
0
11 Sep 2022
AutoMTL: A Programming Framework for Automating Efficient Multi-Task
  Learning
AutoMTL: A Programming Framework for Automating Efficient Multi-Task Learning
Lijun Zhang
Xiao Liu
Hui Guan
12
19
0
25 Oct 2021
Efficiently Identifying Task Groupings for Multi-Task Learning
Efficiently Identifying Task Groupings for Multi-Task Learning
Christopher Fifty
Ehsan Amid
Zhe Zhao
Tianhe Yu
Rohan Anil
Chelsea Finn
201
235
1
10 Sep 2021
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Luca Franceschi
P. Frasconi
Saverio Salzo
Riccardo Grazzi
Massimiliano Pontil
96
714
0
13 Jun 2018
Transferring End-to-End Visuomotor Control from Simulation to Real World
  for a Multi-Stage Task
Transferring End-to-End Visuomotor Control from Simulation to Real World for a Multi-Stage Task
Stephen James
Andrew J. Davison
Edward Johns
159
275
0
07 Jul 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
237
11,568
0
09 Mar 2017
Previous
12