ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.04256
  4. Cited By
GiraffeDet: A Heavy-Neck Paradigm for Object Detection

GiraffeDet: A Heavy-Neck Paradigm for Object Detection

9 February 2022
Yiqi Jiang
Zhiyu Tan
Junyan Wang
Xiuyu Sun
Ming Lin
Hao Li
    ObjD
ArXivPDFHTML

Papers citing "GiraffeDet: A Heavy-Neck Paradigm for Object Detection"

7 / 7 papers shown
Title
SOD-YOLOv8 -- Enhancing YOLOv8 for Small Object Detection in Traffic
  Scenes
SOD-YOLOv8 -- Enhancing YOLOv8 for Small Object Detection in Traffic Scenes
Boshra Khalili
Andrew W. Smyth
ObjD
58
0
0
08 Aug 2024
DAMO-StreamNet: Optimizing Streaming Perception in Autonomous Driving
DAMO-StreamNet: Optimizing Streaming Perception in Autonomous Driving
Ju He
Zhi-Qi Cheng
Chenyang Li
Wangmeng Xiang
Binghui Chen
Bin Luo
Yifeng Geng
Xuansong Xie
AI4CE
14
19
0
30 Mar 2023
Oriented Object Detection in Optical Remote Sensing Images using Deep Learning: A Survey
Oriented Object Detection in Optical Remote Sensing Images using Deep Learning: A Survey
Kunlin Wang
Zi Wang
Zhang Li
Ang Su
Xichao Teng
Minhao Liu
Qifeng Yu
Qifeng Yu
ObjD
79
8
0
21 Feb 2023
DAMO-YOLO : A Report on Real-Time Object Detection Design
DAMO-YOLO : A Report on Real-Time Object Detection Design
Xianzhe Xu
Yiqi Jiang
Weihua Chen
Yi-Li Huang
Yuanhang Zhang
Xiuyu Sun
ObjD
19
156
0
23 Nov 2022
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation
Tongkun Xu
Weihua Chen
Pichao Wang
Fan Wang
Hao Li
R. L. Jin
ViT
44
213
0
13 Sep 2021
Aggregated Residual Transformations for Deep Neural Networks
Aggregated Residual Transformations for Deep Neural Networks
Saining Xie
Ross B. Girshick
Piotr Dollár
Z. Tu
Kaiming He
261
10,106
0
16 Nov 2016
Real-Time Single Image and Video Super-Resolution Using an Efficient
  Sub-Pixel Convolutional Neural Network
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
Wenzhe Shi
Jose Caballero
Ferenc Huszár
J. Totz
Andrew P. Aitken
Rob Bishop
Daniel Rueckert
Zehan Wang
SupR
190
5,138
0
16 Sep 2016
1