Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.05735
Cited By
SleepPPG-Net: a deep learning algorithm for robust sleep staging from continuous photoplethysmography
11 February 2022
Kevin Kotzen
Peter H. Charlton
Sharon Salabi
Lea Amar
A. Landesberg
Joachim A. Behar
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SleepPPG-Net: a deep learning algorithm for robust sleep staging from continuous photoplethysmography"
10 / 10 papers shown
Title
wav2sleep: A Unified Multi-Modal Approach to Sleep Stage Classification from Physiological Signals
Jonathan Carter
Lionel Tarassenko
MLAU
45
0
0
07 Nov 2024
SleepNetZero: Zero-Burden Zero-Shot Reliable Sleep Staging With Neural Networks Based on Ballistocardiograms
Shuzhen Li
Yuxin Chen
Xuesong Chen
Ruiyang Gao
Yupeng Zhang
...
Ziyi Ye
Weijun Huang
Hongliang Yi
Yue Leng
Yi Wu
30
0
0
30 Oct 2024
Optimizing Photoplethysmography-Based Sleep Staging Models by Leveraging Temporal Context for Wearable Devices Applications
Joseph A. P. Quino
D. Cárdenas
Marcelo A. F. Toledo
F. M. Dias
Estela Ribeiro
J. Krieger
Marco A. Gutierrez
27
0
0
01 Oct 2024
SleepPPG-Net2: Deep learning generalization for sleep staging from photoplethysmography
Shirel Attia
Revital Shani Hershkovich
Alissa Tabakhov
Angeleene Ang
Sharon Haimov
Riva Tauman
Joachim A. Behar
37
2
0
10 Apr 2024
SleepVST: Sleep Staging from Near-Infrared Video Signals using Pre-Trained Transformers
Jonathan Carter
João Jorge
O. Gibson
Lionel Tarassenko
29
2
0
04 Apr 2024
A Review of Deep Learning Methods for Photoplethysmography Data
Guangkun Nie
Jiabao Zhu
Gongzheng Tang
Deyun Zhang
Shijia Geng
Qinghao Zhao
Shenda Hong
30
6
0
23 Jan 2024
RawECGNet: Deep Learning Generalization for Atrial Fibrillation Detection from the Raw ECG
N. Ben-Moshe
K. Tsutsui
Shany Biton Brimer
L. Sörnmo
Joachim A. Behar
30
6
0
26 Dec 2023
Generalization in medical AI: a perspective on developing scalable models
Joachim A. Behar
Jeremy Levy
Leo Anthony Celi
OOD
27
6
0
09 Nov 2023
A machine-learning sleep-wake classification model using a reduced number of features derived from photoplethysmography and activity signals
Douglas A. Almeida
F. M. Dias
Marcelo A. F. Toledo
D. Cárdenas
Filipe A. C. Oliveira
Estela Ribeiro
J. Krieger
Marco A. Gutierrez
9
0
0
07 Aug 2023
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
279
9,136
0
06 Jun 2015
1