Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2202.08494
Cited By
v1
v2 (latest)
Learning continuous models for continuous physics
Communications Physics (Commun. Phys.), 2022
17 February 2022
Aditi S. Krishnapriyan
A. Queiruga
N. Benjamin Erichson
Michael W. Mahoney
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Learning continuous models for continuous physics"
24 / 24 papers shown
Title
Uncertainty-Aware Diagnostics for Physics-Informed Machine Learning
Mara Daniels
Liam Hodgkinson
Michael W. Mahoney
PINN
AI4CE
231
0
0
30 Oct 2025
Interpretability and Generalization Bounds for Learning Spatial Physics
Alejandro Francisco Queiruga
Theo Gutman-Solo
Shuai Jiang
AI4CE
155
0
0
18 Jun 2025
Context parroting: A simple but tough-to-beat baseline for foundation models in scientific machine learning
Yuanzhao Zhang
William Gilpin
AI4TS
171
1
0
16 May 2025
Neural equilibria for long-term prediction of nonlinear conservation laws
Jose Antonio Lara Benitez
Junyi Guo
Kareem Hegazy
Ivan Dokmanić
Michael W. Mahoney
Maarten V. de Hoop
198
4
0
12 Jan 2025
Elucidating the Design Choice of Probability Paths in Flow Matching for Forecasting
Soon Hoe Lim
Yijin Wang
Annan Yu
Emma Hart
Michael W. Mahoney
Xiaoye S. Li
N. Benjamin Erichson
AI4TS
403
7
0
04 Oct 2024
Zero-shot forecasting of chaotic systems
International Conference on Learning Representations (ICLR), 2024
Yuanzhao Zhang
William Gilpin
AI4TS
543
15
0
24 Sep 2024
Comparing and Contrasting Deep Learning Weather Prediction Backbones on Navier-Stokes and Atmospheric Dynamics
Matthias Karlbauer
Danielle C. Maddix
Abdul Fatir Ansari
Boran Han
Gaurav Gupta
Yuyang Wang
Andrew Stuart
Michael W. Mahoney
AI4TS
266
4
0
19 Jul 2024
Data-Efficient Operator Learning via Unsupervised Pretraining and In-Context Learning
Wuyang Chen
Jialin Song
Pu Ren
Shashank Subramanian
Dmitriy Morozov
Michael W. Mahoney
AI4CE
368
20
0
24 Feb 2024
Bayesian identification of nonseparable Hamiltonians with multiplicative noise using deep learning and reduced-order modeling
Computer Methods in Applied Mechanics and Engineering (CMAME), 2024
Nicholas Galioto
Harsh Sharma
Boris Kramer
Alex Arkady Gorodetsky
273
1
0
23 Jan 2024
Reduced-order modeling for parameterized PDEs via implicit neural representations
Tianshu Wen
Kookjin Lee
Youngsoo Choi
AI4CE
190
8
0
28 Nov 2023
Stability-Informed Initialization of Neural Ordinary Differential Equations
International Conference on Machine Learning (ICML), 2023
Theodor Westny
Arman Mohammadi
Daniel Jung
Erik Frisk
335
2
0
27 Nov 2023
OceanNet: A principled neural operator-based digital twin for regional oceans
Scientific Reports (Sci Rep), 2023
Ashesh Chattopadhyay
Michael Gray
Tianning Wu
Anna B. Lowe
Ruoying He
AI4Cl
219
29
0
01 Oct 2023
SuperBench: A Super-Resolution Benchmark Dataset for Scientific Machine Learning
Pu Ren
N. Benjamin Erichson
Shashank Subramanian
Omer San
Z. Lukić
Michael W. Mahoney
Michael W. Mahoney
220
22
0
24 Jun 2023
Towards Stability of Autoregressive Neural Operators
Michael McCabe
P. Harrington
Shashank Subramanian
Jed Brown
AI4CE
361
33
0
18 Jun 2023
Some of the variables, some of the parameters, some of the times, with some physics known: Identification with partial information
Computers and Chemical Engineering (Comput. Chem. Eng.), 2023
S. Malani
Tom S. Bertalan
Tianqi Cui
J. Avalos
Michael Betenbaugh
Ioannis G. Kevrekidis
PINN
AI4CE
143
5
0
27 Apr 2023
Learning Physical Models that Can Respect Conservation Laws
International Conference on Machine Learning (ICML), 2023
Derek Hansen
Danielle C. Maddix
S. Alizadeh
Gaurav Gupta
Michael W. Mahoney
AI4CE
326
61
0
21 Feb 2023
Continuous Spatiotemporal Transformers
International Conference on Machine Learning (ICML), 2023
Antonio H. O. Fonseca
E. Zappala
J. O. Caro
David van Dijk
160
10
0
31 Jan 2023
SeqLink: A Robust Neural-ODE Architecture for Modelling Partially Observed Time Series
Futoon M. Abushaqra
Hao Xue
Yongli Ren
Flora D. Salim
AI4TS
244
4
0
07 Dec 2022
Neural DAEs: Constrained neural networks
Tue Boesen
E. Haber
Uri M. Ascher
314
3
0
25 Nov 2022
Learning differentiable solvers for systems with hard constraints
International Conference on Learning Representations (ICLR), 2022
Geoffrey Negiar
Michael W. Mahoney
Aditi S. Krishnapriyan
180
39
0
18 Jul 2022
Noisy Learning for Neural ODEs Acts as a Robustness Locus Widening
Martin Gonzalez
H. Hajri
Loic Cantat
Mihaly Petreczky
163
1
0
16 Jun 2022
On Numerical Integration in Neural Ordinary Differential Equations
International Conference on Machine Learning (ICML), 2022
Aiqing Zhu
Pengzhan Jin
Beibei Zhu
Yifa Tang
197
30
0
15 Jun 2022
Characteristic Neural Ordinary Differential Equations
International Conference on Learning Representations (ICLR), 2021
Xingzi Xu
Ali Hasan
Khalil Elkhalil
Jie Ding
Vahid Tarokh
BDL
298
3
0
25 Nov 2021
Forecasting Sequential Data using Consistent Koopman Autoencoders
International Conference on Machine Learning (ICML), 2020
Omri Azencot
N. Benjamin Erichson
Vanessa Lin
Michael W. Mahoney
AI4TS
AI4CE
408
180
0
04 Mar 2020
1