ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.10156
  4. Cited By
1-WL Expressiveness Is (Almost) All You Need

1-WL Expressiveness Is (Almost) All You Need

21 February 2022
Markus Zopf
ArXivPDFHTML

Papers citing "1-WL Expressiveness Is (Almost) All You Need"

6 / 6 papers shown
Title
A Generalization of ViT/MLP-Mixer to Graphs
A Generalization of ViT/MLP-Mixer to Graphs
Xiaoxin He
Bryan Hooi
T. Laurent
Adam Perold
Yann LeCun
Xavier Bresson
22
88
0
27 Dec 2022
Pure Transformers are Powerful Graph Learners
Pure Transformers are Powerful Graph Learners
Jinwoo Kim
Tien Dat Nguyen
Seonwoo Min
Sungjun Cho
Moontae Lee
Honglak Lee
Seunghoon Hong
19
187
0
06 Jul 2022
Evaluating Self-Supervised Learning for Molecular Graph Embeddings
Evaluating Self-Supervised Learning for Molecular Graph Embeddings
Hanchen Wang
Jean Kaddour
Shengchao Liu
Jian Tang
Joan Lasenby
Qi Liu
17
20
0
16 Jun 2022
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
172
1,100
0
27 Apr 2021
A Survey on The Expressive Power of Graph Neural Networks
A Survey on The Expressive Power of Graph Neural Networks
Ryoma Sato
167
170
0
09 Mar 2020
Benchmarking Graph Neural Networks
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
183
913
0
02 Mar 2020
1