Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.10156
Cited By
1-WL Expressiveness Is (Almost) All You Need
21 February 2022
Markus Zopf
Re-assign community
ArXiv
PDF
HTML
Papers citing
"1-WL Expressiveness Is (Almost) All You Need"
6 / 6 papers shown
Title
A Generalization of ViT/MLP-Mixer to Graphs
Xiaoxin He
Bryan Hooi
T. Laurent
Adam Perold
Yann LeCun
Xavier Bresson
22
88
0
27 Dec 2022
Pure Transformers are Powerful Graph Learners
Jinwoo Kim
Tien Dat Nguyen
Seonwoo Min
Sungjun Cho
Moontae Lee
Honglak Lee
Seunghoon Hong
19
187
0
06 Jul 2022
Evaluating Self-Supervised Learning for Molecular Graph Embeddings
Hanchen Wang
Jean Kaddour
Shengchao Liu
Jian Tang
Joan Lasenby
Qi Liu
17
20
0
16 Jun 2022
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
172
1,100
0
27 Apr 2021
A Survey on The Expressive Power of Graph Neural Networks
Ryoma Sato
170
170
0
09 Mar 2020
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
186
913
0
02 Mar 2020
1