ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.10638
  4. Cited By
Invariance Learning in Deep Neural Networks with Differentiable Laplace
  Approximations

Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations

22 February 2022
Alexander Immer
Tycho F. A. van der Ouderaa
Gunnar Rätsch
Vincent Fortuin
Mark van der Wilk
    BDL
ArXivPDFHTML

Papers citing "Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations"

13 / 13 papers shown
Title
A Complexity-Based Theory of Compositionality
A Complexity-Based Theory of Compositionality
Eric Elmoznino
Thomas Jiralerspong
Yoshua Bengio
Guillaume Lajoie
CoGe
56
3
0
18 Oct 2024
Influence Functions for Scalable Data Attribution in Diffusion Models
Influence Functions for Scalable Data Attribution in Diffusion Models
Bruno Mlodozeniec
Runa Eschenhagen
Juhan Bae
Alexander Immer
David Krueger
Richard E. Turner
TDI
DiffM
75
4
0
17 Oct 2024
The LLM Surgeon
The LLM Surgeon
Tycho F. A. van der Ouderaa
Markus Nagel
M. V. Baalen
Yuki Markus Asano
Tijmen Blankevoort
19
14
0
28 Dec 2023
Resilient Constrained Learning
Resilient Constrained Learning
Ignacio Hounie
Alejandro Ribeiro
Luiz F. O. Chamon
16
9
0
04 Jun 2023
Amortised Invariance Learning for Contrastive Self-Supervision
Amortised Invariance Learning for Contrastive Self-Supervision
Ruchika Chavhan
H. Gouk
Jan Stuehmer
Calum Heggan
Mehrdad Yaghoobi
Timothy M. Hospedales
SSL
20
11
0
24 Feb 2023
The Geometry of Neural Nets' Parameter Spaces Under Reparametrization
The Geometry of Neural Nets' Parameter Spaces Under Reparametrization
Agustinus Kristiadi
Felix Dangel
Philipp Hennig
11
10
0
14 Feb 2023
Automatic Data Augmentation via Invariance-Constrained Learning
Automatic Data Augmentation via Invariance-Constrained Learning
Ignacio Hounie
Luiz F. O. Chamon
Alejandro Ribeiro
13
10
0
29 Sep 2022
Laplacian Autoencoders for Learning Stochastic Representations
Laplacian Autoencoders for Learning Stochastic Representations
M. Miani
Frederik Warburg
Pablo Moreno-Muñoz
Nicke Skafte Detlefsen
Søren Hauberg
UQCV
BDL
SSL
17
10
0
30 Jun 2022
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Bayesian Model Selection, the Marginal Likelihood, and Generalization
Sanae Lotfi
Pavel Izmailov
Gregory W. Benton
Micah Goldblum
A. Wilson
UQCV
BDL
45
56
0
23 Feb 2022
Probing as Quantifying Inductive Bias
Probing as Quantifying Inductive Bias
Alexander Immer
Lucas Torroba Hennigen
Vincent Fortuin
Ryan Cotterell
32
15
0
15 Oct 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
188
1,229
0
08 Jan 2021
Towards Learning Convolutions from Scratch
Towards Learning Convolutions from Scratch
Behnam Neyshabur
SSL
214
71
0
27 Jul 2020
Manifold Gaussian Processes for Regression
Manifold Gaussian Processes for Regression
Roberto Calandra
Jan Peters
C. Rasmussen
M. Deisenroth
84
271
0
24 Feb 2014
1