Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.12123
Cited By
An Information-theoretical Approach to Semi-supervised Learning under Covariate-shift
24 February 2022
Gholamali Aminian
Mahed Abroshan
Mohammad Mahdi Khalili
Laura Toni
M. Rodrigues
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"An Information-theoretical Approach to Semi-supervised Learning under Covariate-shift"
20 / 20 papers shown
Title
Understanding the Capabilities and Limitations of Weak-to-Strong Generalization
Wei Yao
Wenkai Yang
Z. Wang
Yankai Lin
Yong Liu
ELM
90
1
0
03 Feb 2025
Optimal Exact Recovery in Semi-Supervised Learning: A Study of Spectral Methods and Graph Convolutional Networks
Hai-Xiao Wang
Zhichao Wang
71
1
0
18 Dec 2024
Theory-inspired Label Shift Adaptation via Aligned Distribution Mixture
Ruidong Fan
Xiao Ouyang
Hong Tao
Yuhua Qian
Chenping Hou
OOD
44
0
0
04 Nov 2024
Generalized Semi-Supervised Learning via Self-Supervised Feature Adaptation
Jiachen Liang
Ruibing Hou
Hong Chang
Bingpeng Ma
Shiguang Shan
Xilin Chen
19
4
0
31 May 2024
Harnessing the Power of Vicinity-Informed Analysis for Classification under Covariate Shift
Mitsuhiro Fujikawa
Yohei Akimoto
Jun Sakuma
Kazuto Fukuchi
24
0
0
27 May 2024
Semi-Supervised Learning guided by the Generalized Bayes Rule under Soft Revision
Stefan Dietrich
Julian Rodemann
Christoph Jansen
BDL
27
5
0
24 May 2024
Robust Semi-supervised Learning via
f
f
f
-Divergence and
α
α
α
-Rényi Divergence
Gholamali Aminian
Amirhossien Bagheri
Mahyar JafariNodeh
Radmehr Karimian
Mohammad Hossein Yassaee
19
0
0
01 May 2024
Nearest Neighbor Sampling for Covariate Shift Adaptation
Franccois Portier
Lionel Truquet
Ikko Yamane
OffRL
18
0
0
15 Dec 2023
Information-Theoretic Generalization Bounds for Transductive Learning and its Applications
Huayi Tang
Yong Liu
53
1
0
08 Nov 2023
Domain adaptation using optimal transport for invariant learning using histopathology datasets
Kianoush Falahkheirkhah
Alex X. Lu
David Alvarez-Melis
G. Huynh
OOD
MedIm
20
4
0
03 Mar 2023
In all LikelihoodS: How to Reliably Select Pseudo-Labeled Data for Self-Training in Semi-Supervised Learning
Julian Rodemann
Christoph Jansen
G. Schollmeyer
Thomas Augustin
18
0
0
02 Mar 2023
Approximately Bayes-Optimal Pseudo Label Selection
Julian Rodemann
Jann Goschenhofer
Emilio Dorigatti
T. Nagler
Thomas Augustin
19
8
0
17 Feb 2023
How Does Pseudo-Labeling Affect the Generalization Error of the Semi-Supervised Gibbs Algorithm?
Haiyun He
Gholamali Aminian
Yuheng Bu
Miguel R. D. Rodrigues
Vincent Y. F. Tan
19
4
0
15 Oct 2022
Information-Theoretic Analysis of Unsupervised Domain Adaptation
Ziqiao Wang
Yongyi Mao
38
11
0
03 Oct 2022
Learning Algorithm Generalization Error Bounds via Auxiliary Distributions
Gholamali Aminian
Saeed Masiha
Laura Toni
M. Rodrigues
4
7
0
02 Oct 2022
Don't fear the unlabelled: safe semi-supervised learning via simple debiasing
Hugo Schmutz
O. Humbert
Pierre-Alexandre Mattei
11
8
0
14 Mar 2022
Information-Theoretic Characterization of the Generalization Error for Iterative Semi-Supervised Learning
Haiyun He
Hanshu Yan
Vincent Y. F. Tan
11
11
0
03 Oct 2021
Information-Theoretic Bounds on the Moments of the Generalization Error of Learning Algorithms
Gholamali Aminian
Laura Toni
M. Rodrigues
62
16
0
03 Feb 2021
In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label Selection Framework for Semi-Supervised Learning
Mamshad Nayeem Rizve
Kevin Duarte
Y. S. Rawat
M. Shah
206
506
0
15 Jan 2021
Domain Adaptation: Learning Bounds and Algorithms
Yishay Mansour
M. Mohri
Afshin Rostamizadeh
179
786
0
19 Feb 2009
1