ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.14026
  4. Cited By
Robust Training under Label Noise by Over-parameterization

Robust Training under Label Noise by Over-parameterization

28 February 2022
Sheng Liu
Zhihui Zhu
Qing Qu
Chong You
    NoLa
    OOD
ArXivPDFHTML

Papers citing "Robust Training under Label Noise by Over-parameterization"

14 / 14 papers shown
Title
Early Stopping Against Label Noise Without Validation Data
Early Stopping Against Label Noise Without Validation Data
Suqin Yuan
Lei Feng
Tongliang Liu
NoLa
90
14
0
11 Feb 2025
A Survey of Large Language Models for Healthcare: from Data, Technology, and Applications to Accountability and Ethics
A Survey of Large Language Models for Healthcare: from Data, Technology, and Applications to Accountability and Ethics
Kai He
Rui Mao
Qika Lin
Yucheng Ruan
Xiang Lan
Mengling Feng
Erik Cambria
LM&MA
AILaw
90
151
0
28 Jan 2025
Con4m: Context-aware Consistency Learning Framework for Segmented Time Series Classification
Con4m: Context-aware Consistency Learning Framework for Segmented Time Series Classification
Junru Chen
Tianyu Cao
Ninon De Mecquenem
Jiahe Li
Zhilong Chen
F. Friederici
Yang Yang
38
1
0
31 Jul 2024
Compressible Dynamics in Deep Overparameterized Low-Rank Learning &
  Adaptation
Compressible Dynamics in Deep Overparameterized Low-Rank Learning & Adaptation
Can Yaras
Peng Wang
Laura Balzano
Qing Qu
AI4CE
27
12
0
06 Jun 2024
Why is SAM Robust to Label Noise?
Why is SAM Robust to Label Noise?
Christina Baek
Zico Kolter
Aditi Raghunathan
NoLa
AAML
33
9
0
06 May 2024
BadLabel: A Robust Perspective on Evaluating and Enhancing Label-noise
  Learning
BadLabel: A Robust Perspective on Evaluating and Enhancing Label-noise Learning
Jingfeng Zhang
Bo Song
Haohan Wang
Bo Han
Tongliang Liu
Lei Liu
Masashi Sugiyama
AAML
NoLa
30
13
0
28 May 2023
Imprecise Label Learning: A Unified Framework for Learning with Various
  Imprecise Label Configurations
Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations
Hao Chen
Ankit Shah
Jindong Wang
R. Tao
Yidong Wang
Xingxu Xie
Masashi Sugiyama
Rita Singh
Bhiksha Raj
14
12
0
22 May 2023
Fairness Improves Learning from Noisily Labeled Long-Tailed Data
Fairness Improves Learning from Noisily Labeled Long-Tailed Data
Jiaheng Wei
Zhaowei Zhu
Gang Niu
Tongliang Liu
Sijia Liu
Masashi Sugiyama
Yang Liu
21
6
0
22 Mar 2023
Sparsity Winning Twice: Better Robust Generalization from More Efficient
  Training
Sparsity Winning Twice: Better Robust Generalization from More Efficient Training
Tianlong Chen
Zhenyu (Allen) Zhang
Pengju Wang
Santosh Balachandra
Haoyu Ma
Zehao Wang
Zhangyang Wang
OOD
AAML
74
46
0
20 Feb 2022
Mitigating Memorization of Noisy Labels via Regularization between
  Representations
Mitigating Memorization of Noisy Labels via Regularization between Representations
Hao Cheng
Zhaowei Zhu
Xing Sun
Yang Liu
NoLa
20
28
0
18 Oct 2021
Rank Overspecified Robust Matrix Recovery: Subgradient Method and Exact
  Recovery
Rank Overspecified Robust Matrix Recovery: Subgradient Method and Exact Recovery
Lijun Ding
Liwei Jiang
Yudong Chen
Qing Qu
Zhihui Zhu
18
28
0
23 Sep 2021
Provably End-to-end Label-Noise Learning without Anchor Points
Provably End-to-end Label-Noise Learning without Anchor Points
Xuefeng Li
Tongliang Liu
Bo Han
Gang Niu
Masashi Sugiyama
NoLa
112
119
0
04 Feb 2021
Sparsity in Deep Learning: Pruning and growth for efficient inference
  and training in neural networks
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks
Torsten Hoefler
Dan Alistarh
Tal Ben-Nun
Nikoli Dryden
Alexandra Peste
MQ
136
679
0
31 Jan 2021
Exploring Deep Neural Networks via Layer-Peeled Model: Minority Collapse
  in Imbalanced Training
Exploring Deep Neural Networks via Layer-Peeled Model: Minority Collapse in Imbalanced Training
Cong Fang
Hangfeng He
Qi Long
Weijie J. Su
FAtt
117
162
0
29 Jan 2021
1