ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.02424
  4. Cited By
R-GCN: The R Could Stand for Random

R-GCN: The R Could Stand for Random

4 March 2022
Vic Degraeve
Gilles Vandewiele
F. Ongenae
Sofie Van Hoecke
    GNN
ArXivPDFHTML

Papers citing "R-GCN: The R Could Stand for Random"

6 / 6 papers shown
Title
Random Entity Quantization for Parameter-Efficient Compositional
  Knowledge Graph Representation
Random Entity Quantization for Parameter-Efficient Compositional Knowledge Graph Representation
Jiaang Li
Quan Wang
Yi Liu
L. Zhang
Zhendong Mao
16
0
0
24 Oct 2023
Weisfeiler and Leman Go Relational
Weisfeiler and Leman Go Relational
Pablo Barceló
Mikhail Galkin
Christopher Morris
Miguel Romero Orth
GNN
23
27
0
30 Nov 2022
Knowledge Graph Contrastive Learning Based on Relation-Symmetrical
  Structure
Knowledge Graph Contrastive Learning Based on Relation-Symmetrical Structure
K. Liang
Yue Liu
Sihang Zhou
Wenxuan Tu
Yi Wen
Xihong Yang
Xiang Dong
Xinwang Liu
19
76
0
19 Nov 2022
Graph Neural Modeling of Network Flows
Graph Neural Modeling of Network Flows
Victor-Alexandru Darvariu
Stephen Hailes
Mirco Musolesi
GNN
11
4
0
12 Sep 2022
pyRDF2Vec: A Python Implementation and Extension of RDF2Vec
pyRDF2Vec: A Python Implementation and Extension of RDF2Vec
Gilles Vandewiele
Bram Steenwinckel
Terencio Agozzino
F. Ongenae
12
20
0
04 May 2022
Efficient Estimation of Word Representations in Vector Space
Efficient Estimation of Word Representations in Vector Space
Tomáš Mikolov
Kai Chen
G. Corrado
J. Dean
3DV
228
29,632
0
16 Jan 2013
1