ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.07662
  4. Cited By
What's in the Black Box? The False Negative Mechanisms Inside Object
  Detectors
v1v2v3v4 (latest)

What's in the Black Box? The False Negative Mechanisms Inside Object Detectors

IEEE Robotics and Automation Letters (RA-L), 2022
15 March 2022
Dimity Miller
Peyman Moghadam
Mark Cox
Matt Wildie
Raja Jurdak
ArXiv (abs)PDFHTMLGithub (7★)

Papers citing "What's in the Black Box? The False Negative Mechanisms Inside Object Detectors"

11 / 11 papers shown
Are All Marine Species Created Equal? Performance Disparities in Underwater Object Detection
Are All Marine Species Created Equal? Performance Disparities in Underwater Object Detection
Melanie Wille
Tobias Fischer
Scarlett Raine
126
0
0
26 Aug 2025
System-Level Safety Monitoring and Recovery for Perception Failures in
  Autonomous Vehicles
System-Level Safety Monitoring and Recovery for Perception Failures in Autonomous VehiclesIEEE International Conference on Robotics and Automation (ICRA), 2024
Kaustav Chakraborty
Zeyuan Feng
Sushant Veer
Apoorva Sharma
Boris Ivanovic
Marco Pavone
Somil Bansal
262
7
0
26 Sep 2024
Synergistic Perception and Control Simplex for Verifiable Safe Vertical
  Landing
Synergistic Perception and Control Simplex for Verifiable Safe Vertical Landing
Ayoosh Bansal
Yang Zhao
James Zhu
Sheng Cheng
Yuliang Gu
Hyung-Jin Yoon
Hunmin Kim
N. Hovakimyan
Lui Sha
263
3
0
05 Dec 2023
SKU-Patch: Towards Efficient Instance Segmentation for Unseen Objects in
  Auto-Store
SKU-Patch: Towards Efficient Instance Segmentation for Unseen Objects in Auto-Store
Biqi Yang
Weiliang Tang
Xiaojie Gao
Xianzhi Li
Yunhui Liu
Chi-Wing Fu
Pheng-Ann Heng
210
1
0
08 Nov 2023
Enhancing Your Trained DETRs with Box Refinement
Enhancing Your Trained DETRs with Box Refinement
Yiqun Chen
Qiang Chen
Pei Sun
Shoufa Chen
Jingdong Wang
Jian Cheng
235
5
0
21 Jul 2023
Task-Aware Risk Estimation of Perception Failures for Autonomous
  Vehicles
Task-Aware Risk Estimation of Perception Failures for Autonomous Vehicles
Pasquale Antonante
Sushant Veer
Zheng Li
Xinshuo Weng
Luca Carlone
Marco Pavone
197
16
0
03 May 2023
Revealing Similar Semantics Inside CNNs: An Interpretable Concept-based
  Comparison of Feature Spaces
Revealing Similar Semantics Inside CNNs: An Interpretable Concept-based Comparison of Feature Spaces
Georgii Mikriukov
Gesina Schwalbe
Christian Hellert
Korinna Bade
179
3
0
30 Apr 2023
Perception Simplex: Verifiable Collision Avoidance in Autonomous
  Vehicles Amidst Obstacle Detection Faults
Perception Simplex: Verifiable Collision Avoidance in Autonomous Vehicles Amidst Obstacle Detection FaultsSoftware testing, verification & reliability (STVR), 2022
Ayoosh Bansal
Hunmin Kim
Simon Yu
Yue Liu
N. Hovakimyan
Marco Caccamo
L. Sha
AAML
282
4
0
04 Sep 2022
SAFE: Sensitivity-Aware Features for Out-of-Distribution Object
  Detection
SAFE: Sensitivity-Aware Features for Out-of-Distribution Object DetectionIEEE International Conference on Computer Vision (ICCV), 2022
Samuel Wilson
Tobias Fischer
Feras Dayoub
Dimity Miller
Niko Sünderhauf
OODD
482
43
0
29 Aug 2022
Monitoring of Perception Systems: Deterministic, Probabilistic, and
  Learning-based Fault Detection and Identification
Monitoring of Perception Systems: Deterministic, Probabilistic, and Learning-based Fault Detection and IdentificationArtificial Intelligence (AIJ), 2022
Pasquale Antonante
Heath Nilsen
Luca Carlone
201
30
0
22 May 2022
YOLO9000: Better, Faster, Stronger
YOLO9000: Better, Faster, StrongerComputer Vision and Pattern Recognition (CVPR), 2016
Joseph Redmon
Ali Farhadi
VLMObjD
611
17,079
0
25 Dec 2016
1
Page 1 of 1