ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.10462
  4. Cited By
Optical Flow for Video Super-Resolution: A Survey

Optical Flow for Video Super-Resolution: A Survey

20 March 2022
Zhigang Tu
Hongyan Li
Wei Xie
Yuanzhong Liu
Shifu Zhang
Baoxin Li
Junsong Yuan
    SupR
ArXivPDFHTML

Papers citing "Optical Flow for Video Super-Resolution: A Survey"

4 / 4 papers shown
Title
AnyFlow: Arbitrary Scale Optical Flow with Implicit Neural
  Representation
AnyFlow: Arbitrary Scale Optical Flow with Implicit Neural Representation
Hyun-Joo Jung
Zhuo Hui
Lei Luo
Haitao Yang
Feng Liu
S. Yoo
Rakesh Ranjan
D. Demandolx
3DPC
24
13
0
29 Mar 2023
Temporal Modulation Network for Controllable Space-Time Video
  Super-Resolution
Temporal Modulation Network for Controllable Space-Time Video Super-Resolution
Gang Xu
Jun Xu
Zhen Li
Liang Wang
Xing Sun
Ming-Ming Cheng
SupR
63
91
0
21 Apr 2021
Generative Adversarial Networks and Perceptual Losses for Video
  Super-Resolution
Generative Adversarial Networks and Perceptual Losses for Video Super-Resolution
Alice Lucas
Santiago López-Tapia
Rafael Molina
Aggelos K. Katsaggelos
GAN
SupR
31
171
0
14 Jun 2018
Real-Time Single Image and Video Super-Resolution Using an Efficient
  Sub-Pixel Convolutional Neural Network
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
Wenzhe Shi
Jose Caballero
Ferenc Huszár
J. Totz
Andrew P. Aitken
Rob Bishop
Daniel Rueckert
Zehan Wang
SupR
183
5,138
0
16 Sep 2016
1