ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.10592
  4. Cited By
Geometric Methods for Sampling, Optimisation, Inference and Adaptive
  Agents

Geometric Methods for Sampling, Optimisation, Inference and Adaptive Agents

20 March 2022
Alessandro Barp
Lancelot Da Costa
G. Francca
Karl J. Friston
Mark Girolami
Michael I. Jordan
G. Pavliotis
ArXivPDFHTML

Papers citing "Geometric Methods for Sampling, Optimisation, Inference and Adaptive Agents"

16 / 16 papers shown
Title
Value of Information and Reward Specification in Active Inference and
  POMDPs
Value of Information and Reward Specification in Active Inference and POMDPs
Ran Wei
44
3
0
13 Aug 2024
Active Inference as a Model of Agency
Active Inference as a Model of Agency
Lancelot Da Costa
Samuel Tenka
Dominic Zhao
Noor Sajid
10
8
0
23 Jan 2024
Sampling and estimation on manifolds using the Langevin diffusion
Sampling and estimation on manifolds using the Langevin diffusion
Karthik Bharath
Alexander Lewis
Akash Sharma
M. Tretyakov
DiffM
64
5
0
22 Dec 2023
Targeted Separation and Convergence with Kernel Discrepancies
Targeted Separation and Convergence with Kernel Discrepancies
Alessandro Barp
Carl-Johann Simon-Gabriel
Mark Girolami
Lester W. Mackey
40
14
0
26 Sep 2022
Nesterov smoothing for sampling without smoothness
Nesterov smoothing for sampling without smoothness
JiaoJiao Fan
Bo Yuan
Jiaming Liang
Yongxin Chen
32
2
0
15 Aug 2022
Modelling non-reinforced preferences using selective attention
Modelling non-reinforced preferences using selective attention
Noor Sajid
P. Tigas
Z. Fountas
Qinghai Guo
Alexey Zakharov
Lancelot Da Costa
11
1
0
25 Jul 2022
Nonlinear MCMC for Bayesian Machine Learning
Nonlinear MCMC for Bayesian Machine Learning
James Vuckovic
12
2
0
11 Feb 2022
pymdp: A Python library for active inference in discrete state spaces
pymdp: A Python library for active inference in discrete state spaces
Conor Heins
Beren Millidge
Daphne Demekas
Brennan Klein
Karl J. Friston
I. Couzin
Alexander Tschantz
AI4CE
23
48
0
11 Jan 2022
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
172
1,100
0
27 Apr 2021
An empirical evaluation of active inference in multi-armed bandits
An empirical evaluation of active inference in multi-armed bandits
D. Marković
Hrvoje Stojić
Sarah Schwöbel
S. Kiebel
30
34
0
21 Jan 2021
Reward Maximisation through Discrete Active Inference
Reward Maximisation through Discrete Active Inference
Lancelot Da Costa
Noor Sajid
Thomas Parr
Karl J. Friston
Ryan Smith
10
4
0
17 Sep 2020
Measuring Sample Quality with Kernels
Measuring Sample Quality with Kernels
Jackson Gorham
Lester W. Mackey
78
221
0
06 Mar 2017
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis
  of Big Data
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis of Big Data
J. Bierkens
Paul Fearnhead
Gareth O. Roberts
53
232
0
11 Jul 2016
A Kernel Test of Goodness of Fit
A Kernel Test of Goodness of Fit
Kacper P. Chwialkowski
Heiko Strathmann
A. Gretton
BDL
94
324
0
09 Feb 2016
A Differential Equation for Modeling Nesterov's Accelerated Gradient
  Method: Theory and Insights
A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights
Weijie Su
Stephen P. Boyd
Emmanuel J. Candes
97
1,151
0
04 Mar 2015
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
132
3,263
0
09 Jun 2012
1