Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.10716
Cited By
Forecast Evaluation for Data Scientists: Common Pitfalls and Best Practices
21 March 2022
Hansika Hewamalage
Klaus Ackermann
Christoph Bergmeir
AI4TS
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Forecast Evaluation for Data Scientists: Common Pitfalls and Best Practices"
21 / 21 papers shown
Title
Do global forecasting models require frequent retraining?
Marco Zanotti
30
0
0
01 May 2025
ModelRadar: Aspect-based Forecast Evaluation
Vítor Cerqueira
Luis Roque
Carlos Soares
45
0
0
31 Mar 2025
Adaptive parameters identification for nonlinear dynamics using deep permutation invariant networks
Mouad Elaarabi
Domenico Borzacchiello
Yves Le Guennec
Philippe Le Bot
Sebastien Comas-Cardona
66
0
0
20 Jan 2025
Ada-MSHyper: Adaptive Multi-Scale Hypergraph Transformer for Time Series Forecasting
Zongjiang Shang
Ling Chen
Binqing Wu
Dongliang Cui
AI4TS
AI4CE
26
1
0
31 Oct 2024
An Evaluation of Standard Statistical Models and LLMs on Time Series Forecasting
Rui Cao
Qiao Wang
27
1
0
09 Aug 2024
Scalable Transformer for High Dimensional Multivariate Time Series Forecasting
Xin Zhou
Weiqing Wang
Wray L. Buntine
Shilin Qu
Abishek Sriramulu
Weicong Tan
Christoph Bergmeir
AI4TS
42
0
0
08 Aug 2024
Forecasting with Deep Learning: Beyond Average of Average of Average Performance
Vítor Cerqueira
Luis Roque
Carlos Soares
19
1
0
24 Jun 2024
The impact of data set similarity and diversity on transfer learning success in time series forecasting
Claudia Ehrig
Benedikt Sonnleitner
Ursula Neumann
Catherine Cleophas
Germain Forestier
AI4TS
27
1
0
09 Apr 2024
A review of regularised estimation methods and cross-validation in spatiotemporal statistics
Philipp Otto
A. Fassò
Paolo Maranzano
14
0
0
31 Jan 2024
Symbolic Regression as Feature Engineering Method for Machine and Deep Learning Regression Tasks
Assaf Shmuel
Oren Glickman
Teddy Lazebnik
20
9
0
10 Nov 2023
Large Language Models Are Zero-Shot Time Series Forecasters
Nate Gruver
Marc Finzi
Shikai Qiu
Andrew Gordon Wilson
AI4TS
27
313
0
11 Oct 2023
Pushing the Limits of Pre-training for Time Series Forecasting in the CloudOps Domain
Gerald Woo
Chenghao Liu
Akshat Kumar
Doyen Sahoo
AI4TS
AI4CE
16
12
0
08 Oct 2023
1D-CapsNet-LSTM: A Deep Learning-Based Model for Multi-Step Stock Index Forecasting
Cheng Zhang
N. N. Sjarif
Roslina Ibrahim
AIFin
AI4TS
10
6
0
03 Oct 2023
Hierarchical learning, forecasting coherent spatio-temporal individual and aggregated building loads
J. Leprince
H. Madsen
J. Møller
W. Zeiler
8
1
0
30 Jan 2023
Causal Effect Estimation with Global Probabilistic Forecasting: A Case Study of the Impact of Covid-19 Lockdowns on Energy Demand
Ankitha Nandipura Prasanna
Priscila Grecov
Angela Dieyu Weng
Christoph Bergmeir
7
0
0
19 Sep 2022
FRANS: Automatic Feature Extraction for Time Series Forecasting
A. Chernikov
Chang Wei Tan
Pablo Montero-Manso
Christoph Bergmeir
AI4TS
14
1
0
15 Sep 2022
FreDo: Frequency Domain-based Long-Term Time Series Forecasting
Fan-Keng Sun
Duane S. Boning
AI4TS
45
10
0
24 May 2022
FiLM: Frequency improved Legendre Memory Model for Long-term Time Series Forecasting
Tian Zhou
Ziqing Ma
Xue Wang
Qingsong Wen
Liang Sun
Tao Yao
Wotao Yin
Rong Jin
AI4TS
115
165
0
18 May 2022
Learning in High Dimension Always Amounts to Extrapolation
Randall Balestriero
J. Pesenti
Yann LeCun
31
87
0
18 Oct 2021
How to avoid machine learning pitfalls: a guide for academic researchers
M. Lones
VLM
FaML
OnRL
54
75
0
05 Aug 2021
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting
Haoyi Zhou
Shanghang Zhang
J. Peng
Shuai Zhang
Jianxin Li
Hui Xiong
Wan Zhang
AI4TS
161
3,799
0
14 Dec 2020
1