Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.11481
Cited By
Mixed Differential Privacy in Computer Vision
22 March 2022
Aditya Golatkar
Alessandro Achille
Yu Wang
Aaron Roth
Michael Kearns
Stefano Soatto
PICV
VLM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Mixed Differential Privacy in Computer Vision"
44 / 44 papers shown
Title
NoEsis: Differentially Private Knowledge Transfer in Modular LLM Adaptation
Rob Romijnders
Stefanos Laskaridis
Ali Shahin Shamsabadi
Hamed Haddadi
69
0
0
25 Apr 2025
DC-SGD: Differentially Private SGD with Dynamic Clipping through Gradient Norm Distribution Estimation
Chengkun Wei
Weixian Li
Chen Gong
Wenzhi Chen
65
0
0
29 Mar 2025
Hyperbolic Safety-Aware Vision-Language Models
Tobia Poppi
Tejaswi Kasarla
Pascal Mettes
Lorenzo Baraldi
Rita Cucchiara
VLM
MU
71
0
0
15 Mar 2025
Weights Shuffling for Improving DPSGD in Transformer-based Models
Jungang Yang
Zhe Ji
Liyao Xiang
74
0
0
22 Jul 2024
Diffusion Soup: Model Merging for Text-to-Image Diffusion Models
Benjamin Biggs
Arjun Seshadri
Yang Zou
Achin Jain
Aditya Golatkar
Yusheng Xie
Alessandro Achille
Ashwin Swaminathan
Stefano Soatto
MoMe
DiffM
54
10
0
12 Jun 2024
Clip Body and Tail Separately: High Probability Guarantees for DPSGD with Heavy Tails
Haichao Sha
Yang Cao
Yong Liu
Yuncheng Wu
Ruixuan Liu
Hong Chen
56
2
0
27 May 2024
LazyDP: Co-Designing Algorithm-Software for Scalable Training of Differentially Private Recommendation Models
Juntaek Lim
Youngeun Kwon
Ranggi Hwang
Kiwan Maeng
Edward Suh
Minsoo Rhu
SyDa
38
0
0
12 Apr 2024
Advances in Differential Privacy and Differentially Private Machine Learning
Saswat Das
Subhankar Mishra
40
4
0
06 Apr 2024
CPR: Retrieval Augmented Generation for Copyright Protection
Aditya Golatkar
Alessandro Achille
Luca Zancato
Yu-Xiang Wang
Ashwin Swaminathan
Stefano Soatto
DiffM
59
17
0
27 Mar 2024
Pre-training Differentially Private Models with Limited Public Data
Zhiqi Bu
Xinwei Zhang
Mingyi Hong
Sheng Zha
George Karypis
79
3
0
28 Feb 2024
Privacy-Preserving Instructions for Aligning Large Language Models
Da Yu
Peter Kairouz
Sewoong Oh
Zheng Xu
47
18
0
21 Feb 2024
Oracle-Efficient Differentially Private Learning with Public Data
Adam Block
Mark Bun
Rathin Desai
Abhishek Shetty
Steven Wu
FedML
29
2
0
13 Feb 2024
On the Benefits of Public Representations for Private Transfer Learning under Distribution Shift
Pratiksha Thaker
Amrith Rajagopal Setlur
Zhiwei Steven Wu
Virginia Smith
52
2
0
24 Dec 2023
Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning Interference with Gradient Projection
Tuan Hoang
Santu Rana
Sunil R. Gupta
Svetha Venkatesh
BDL
MU
39
21
0
07 Dec 2023
PCDP-SGD: Improving the Convergence of Differentially Private SGD via Projection in Advance
Haichao Sha
Ruixuan Liu
Yi-xiao Liu
Hong Chen
57
1
0
06 Dec 2023
Safe-CLIP: Removing NSFW Concepts from Vision-and-Language Models
Samuele Poppi
Tobia Poppi
Federico Cocchi
Marcella Cornia
Lorenzo Baraldi
Rita Cucchiara
VLM
27
9
0
27 Nov 2023
DPSUR: Accelerating Differentially Private Stochastic Gradient Descent Using Selective Update and Release
Jie Fu
Qingqing Ye
Haibo Hu
Zhili Chen
Lulu Wang
Kuncan Wang
Xun Ran
34
14
0
23 Nov 2023
On the accuracy and efficiency of group-wise clipping in differentially private optimization
Zhiqi Bu
Ruixuan Liu
Yu Wang
Sheng Zha
George Karypis
VLM
40
4
0
30 Oct 2023
Private Learning with Public Features
Walid Krichene
Nicolas Mayoraz
Steffen Rendle
Shuang Song
Abhradeep Thakurta
Li Zhang
32
7
0
24 Oct 2023
Coupling public and private gradient provably helps optimization
Ruixuan Liu
Zhiqi Bu
Yu Wang
Sheng Zha
George Karypis
46
2
0
02 Oct 2023
Private Matrix Factorization with Public Item Features
Mihaela Curmei
Walid Krichene
Li Zhang
Mukund Sundararajan
42
3
0
17 Sep 2023
Training Data Protection with Compositional Diffusion Models
Aditya Golatkar
Alessandro Achille
A. Swaminathan
Stefano Soatto
DiffM
39
11
0
02 Aug 2023
Tangent Transformers for Composition, Privacy and Removal
Tian Yu Liu
Aditya Golatkar
Stefano Soatto
35
8
0
16 Jul 2023
TMI! Finetuned Models Leak Private Information from their Pretraining Data
John Abascal
Stanley Wu
Alina Oprea
Jonathan R. Ullman
48
16
0
01 Jun 2023
DPFormer: Learning Differentially Private Transformer on Long-Tailed Data
Youlong Ding
Xueyang Wu
Hongya Wang
Weike Pan
60
0
0
28 May 2023
Selective Pre-training for Private Fine-tuning
Da Yu
Sivakanth Gopi
Janardhan Kulkarni
Zinan Lin
Saurabh Naik
Tomasz Religa
Jian Yin
Huishuai Zhang
43
19
0
23 May 2023
SAFE: Machine Unlearning With Shard Graphs
Yonatan Dukler
Benjamin Bowman
Alessandro Achille
Aditya Golatkar
A. Swaminathan
Stefano Soatto
MU
33
22
0
25 Apr 2023
Practical Differentially Private and Byzantine-resilient Federated Learning
Zihang Xiang
Tianhao Wang
Wanyu Lin
Di Wang
FedML
41
23
0
15 Apr 2023
AI Model Disgorgement: Methods and Choices
Alessandro Achille
Michael Kearns
Carson Klingenberg
Stefano Soatto
MU
48
11
0
07 Apr 2023
Exploring the Benefits of Visual Prompting in Differential Privacy
Yizhe Li
Yu-Lin Tsai
Xuebin Ren
Chia-Mu Yu
Pin-Yu Chen
AAML
VPVLM
29
18
0
22 Mar 2023
Choosing Public Datasets for Private Machine Learning via Gradient Subspace Distance
Xin Gu
Gautam Kamath
Zhiwei Steven Wu
36
12
0
02 Mar 2023
Why Is Public Pretraining Necessary for Private Model Training?
Arun Ganesh
Mahdi Haghifam
Milad Nasr
Sewoong Oh
Thomas Steinke
Om Thakkar
Abhradeep Thakurta
Lun Wang
31
37
0
19 Feb 2023
On the Efficacy of Differentially Private Few-shot Image Classification
Marlon Tobaben
Aliaksandra Shysheya
J. Bronskill
Andrew Paverd
Shruti Tople
Santiago Zanella Béguelin
Richard Turner
Antti Honkela
46
11
0
02 Feb 2023
Equivariant Differentially Private Deep Learning: Why DP-SGD Needs Sparser Models
Florian A. Hölzl
Daniel Rueckert
Georgios Kaissis
54
4
0
30 Jan 2023
Exploring the Limits of Differentially Private Deep Learning with Group-wise Clipping
Jiyan He
Xuechen Li
Da Yu
Huishuai Zhang
Janardhan Kulkarni
Y. Lee
A. Backurs
Nenghai Yu
Jiang Bian
62
46
0
03 Dec 2022
Differentially Private Image Classification from Features
Harsh Mehta
Walid Krichene
Abhradeep Thakurta
Alexey Kurakin
Ashok Cutkosky
67
7
0
24 Nov 2022
SA-DPSGD: Differentially Private Stochastic Gradient Descent based on Simulated Annealing
Jie Fu
Zhili Chen
Xinpeng Ling
37
0
0
14 Nov 2022
Automatic Clipping: Differentially Private Deep Learning Made Easier and Stronger
Zhiqi Bu
Yu Wang
Sheng Zha
George Karypis
51
69
0
14 Jun 2022
Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent
Da Yu
Gautam Kamath
Janardhan Kulkarni
Tie-Yan Liu
Jian Yin
Huishuai Zhang
41
19
0
06 Jun 2022
Unlocking High-Accuracy Differentially Private Image Classification through Scale
Soham De
Leonard Berrada
Jamie Hayes
Samuel L. Smith
Borja Balle
40
219
0
28 Apr 2022
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
134
352
0
13 Oct 2021
Do Not Let Privacy Overbill Utility: Gradient Embedding Perturbation for Private Learning
Da Yu
Huishuai Zhang
Wei Chen
Tie-Yan Liu
FedML
SILM
94
112
0
25 Feb 2021
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
305
1,840
0
14 Dec 2020
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method
Simon Lacoste-Julien
Mark Schmidt
Francis R. Bach
130
260
0
10 Dec 2012
1