Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.12610
Cited By
AI Poincaré 2.0: Machine Learning Conservation Laws from Differential Equations
23 March 2022
Ziming Liu
Varun Madhavan
M. Tegmark
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"AI Poincaré 2.0: Machine Learning Conservation Laws from Differential Equations"
16 / 16 papers shown
Title
AI-Newton: A Concept-Driven Physical Law Discovery System without Prior Physical Knowledge
You-Le Fang
Dong-Shan Jian
Xiang Li
Yan Ma
23
0
0
02 Apr 2025
Interpretable Machine Learning in Physics: A Review
Sebastian Johann Wetzel
Seungwoong Ha
Raban Iten
Miriam Klopotek
Ziming Liu
AI4CE
75
0
0
30 Mar 2025
Learning finite symmetry groups of dynamical systems via equivariance detection
Pablo Calvo-Barlés
Sergio G. Rodrigo
Luis Martín-Moreno
47
0
0
04 Mar 2025
Data-Driven Discovery of Conservation Laws from Trajectories via Neural Deflation
Shaoxuan Chen
Panayotis G. Kevrekidis
Hong-Kun Zhang
Wei Zhu
PINN
16
1
0
07 Oct 2024
Exploring the Truth and Beauty of Theory Landscapes with Machine Learning
Konstantin T. Matchev
Katia Matcheva
Pierre Ramond
Sarunas Verner
14
2
0
21 Jan 2024
A charge-preserving method for solving graph neural diffusion networks
Lidia Aceto
Pietro Antonio Grassi
12
0
0
16 Dec 2023
Seeking Truth and Beauty in Flavor Physics with Machine Learning
Konstantin T. Matchev
Katia Matcheva
Pierre Ramond
Sarunas Verner
AI4CE
11
2
0
31 Oct 2023
Discovering New Interpretable Conservation Laws as Sparse Invariants
Ziming Liu
Patrick Obin Sturm
Saketh Bharadwaj
Sam Silva
M. Tegmark
10
6
0
31 May 2023
ConCerNet: A Contrastive Learning Based Framework for Automated Conservation Law Discovery and Trustworthy Dynamical System Prediction
Wang Zhang
Tsui-Wei Weng
Subhro Das
Alexandre Megretski
Lucani E. Daniel
Lam M. Nguyen
PINN
8
1
0
11 Feb 2023
Model-agnostic machine learning of conservation laws from data
Shivam Arora
Alexander Bihlo
Rudiger Brecht
P. Holba
PINN
AI4CE
11
3
0
12 Jan 2023
Is the Machine Smarter than the Theorist: Deriving Formulas for Particle Kinematics with Symbolic Regression
Zhongtian Dong
K. Kong
Konstantin T. Matchev
Katia Matcheva
14
13
0
15 Nov 2022
Discovering Conservation Laws using Optimal Transport and Manifold Learning
Peter Y. Lu
Rumen Dangovski
M. Soljavcić
13
17
0
31 Aug 2022
Learning quantum symmetries with interactive quantum-classical variational algorithms
Jonathan Z. Lu
R. A. Bravo
Kaiying Hou
Gebremedhin A. Dagnew
S. Yelin
K. Najafi
14
3
0
23 Jun 2022
Physics-Augmented Learning: A New Paradigm Beyond Physics-Informed Learning
Ziming Liu
Yunyue Chen
Yuanqi Du
Max Tegmark
PINN
AI4CE
35
22
0
28 Sep 2021
Machine-learning hidden symmetries
Ziming Liu
Max Tegmark
40
52
0
20 Sep 2021
Neural Mechanics: Symmetry and Broken Conservation Laws in Deep Learning Dynamics
D. Kunin
Javier Sagastuy-Breña
Surya Ganguli
Daniel L. K. Yamins
Hidenori Tanaka
97
77
0
08 Dec 2020
1