ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.12610
  4. Cited By
AI Poincaré 2.0: Machine Learning Conservation Laws from
  Differential Equations

AI Poincaré 2.0: Machine Learning Conservation Laws from Differential Equations

23 March 2022
Ziming Liu
Varun Madhavan
M. Tegmark
    PINN
ArXivPDFHTML

Papers citing "AI Poincaré 2.0: Machine Learning Conservation Laws from Differential Equations"

16 / 16 papers shown
Title
AI-Newton: A Concept-Driven Physical Law Discovery System without Prior Physical Knowledge
You-Le Fang
Dong-Shan Jian
Xiang Li
Yan Ma
23
0
0
02 Apr 2025
Interpretable Machine Learning in Physics: A Review
Interpretable Machine Learning in Physics: A Review
Sebastian Johann Wetzel
Seungwoong Ha
Raban Iten
Miriam Klopotek
Ziming Liu
AI4CE
75
0
0
30 Mar 2025
Learning finite symmetry groups of dynamical systems via equivariance detection
Pablo Calvo-Barlés
Sergio G. Rodrigo
Luis Martín-Moreno
47
0
0
04 Mar 2025
Data-Driven Discovery of Conservation Laws from Trajectories via Neural
  Deflation
Data-Driven Discovery of Conservation Laws from Trajectories via Neural Deflation
Shaoxuan Chen
Panayotis G. Kevrekidis
Hong-Kun Zhang
Wei Zhu
PINN
16
1
0
07 Oct 2024
Exploring the Truth and Beauty of Theory Landscapes with Machine
  Learning
Exploring the Truth and Beauty of Theory Landscapes with Machine Learning
Konstantin T. Matchev
Katia Matcheva
Pierre Ramond
Sarunas Verner
14
2
0
21 Jan 2024
A charge-preserving method for solving graph neural diffusion networks
A charge-preserving method for solving graph neural diffusion networks
Lidia Aceto
Pietro Antonio Grassi
12
0
0
16 Dec 2023
Seeking Truth and Beauty in Flavor Physics with Machine Learning
Seeking Truth and Beauty in Flavor Physics with Machine Learning
Konstantin T. Matchev
Katia Matcheva
Pierre Ramond
Sarunas Verner
AI4CE
11
2
0
31 Oct 2023
Discovering New Interpretable Conservation Laws as Sparse Invariants
Discovering New Interpretable Conservation Laws as Sparse Invariants
Ziming Liu
Patrick Obin Sturm
Saketh Bharadwaj
Sam Silva
M. Tegmark
10
6
0
31 May 2023
ConCerNet: A Contrastive Learning Based Framework for Automated
  Conservation Law Discovery and Trustworthy Dynamical System Prediction
ConCerNet: A Contrastive Learning Based Framework for Automated Conservation Law Discovery and Trustworthy Dynamical System Prediction
Wang Zhang
Tsui-Wei Weng
Subhro Das
Alexandre Megretski
Lucani E. Daniel
Lam M. Nguyen
PINN
8
1
0
11 Feb 2023
Model-agnostic machine learning of conservation laws from data
Model-agnostic machine learning of conservation laws from data
Shivam Arora
Alexander Bihlo
Rudiger Brecht
P. Holba
PINN
AI4CE
13
3
0
12 Jan 2023
Is the Machine Smarter than the Theorist: Deriving Formulas for Particle
  Kinematics with Symbolic Regression
Is the Machine Smarter than the Theorist: Deriving Formulas for Particle Kinematics with Symbolic Regression
Zhongtian Dong
K. Kong
Konstantin T. Matchev
Katia Matcheva
17
13
0
15 Nov 2022
Discovering Conservation Laws using Optimal Transport and Manifold
  Learning
Discovering Conservation Laws using Optimal Transport and Manifold Learning
Peter Y. Lu
Rumen Dangovski
M. Soljavcić
16
17
0
31 Aug 2022
Learning quantum symmetries with interactive quantum-classical
  variational algorithms
Learning quantum symmetries with interactive quantum-classical variational algorithms
Jonathan Z. Lu
R. A. Bravo
Kaiying Hou
Gebremedhin A. Dagnew
S. Yelin
K. Najafi
14
3
0
23 Jun 2022
Physics-Augmented Learning: A New Paradigm Beyond Physics-Informed
  Learning
Physics-Augmented Learning: A New Paradigm Beyond Physics-Informed Learning
Ziming Liu
Yunyue Chen
Yuanqi Du
Max Tegmark
PINN
AI4CE
35
22
0
28 Sep 2021
Machine-learning hidden symmetries
Machine-learning hidden symmetries
Ziming Liu
Max Tegmark
40
52
0
20 Sep 2021
Neural Mechanics: Symmetry and Broken Conservation Laws in Deep Learning
  Dynamics
Neural Mechanics: Symmetry and Broken Conservation Laws in Deep Learning Dynamics
D. Kunin
Javier Sagastuy-Breña
Surya Ganguli
Daniel L. K. Yamins
Hidenori Tanaka
97
77
0
08 Dec 2020
1