ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.12621
  4. Cited By
MR Image Denoising and Super-Resolution Using Regularized Reverse
  Diffusion

MR Image Denoising and Super-Resolution Using Regularized Reverse Diffusion

23 March 2022
Hyungjin Chung
Eunha Lee
Jong Chul Ye
    DiffM
    MedIm
ArXivPDFHTML

Papers citing "MR Image Denoising and Super-Resolution Using Regularized Reverse Diffusion"

14 / 14 papers shown
Title
Regression is all you need for medical image translation
Regression is all you need for medical image translation
Sebastian Rassmann
David Kügler
Christian Ewert
Martin Reuter
DiffM
MedIm
79
0
0
04 May 2025
AeroGen: Enhancing Remote Sensing Object Detection with Diffusion-Driven Data Generation
AeroGen: Enhancing Remote Sensing Object Detection with Diffusion-Driven Data Generation
Datao Tang
Xiangyong Cao
Xuan Wu
Jialin Li
Jing Yao
Xueru Bai
Deyu Meng
Yin Li
Deyu Meng
DiffM
74
5
0
23 Nov 2024
Untrained Perceptual Loss for image denoising of line-like structures in MR images
Untrained Perceptual Loss for image denoising of line-like structures in MR images
Elisabeth Pfaehler
Daniel Pflugfelder
Hanno Scharr
26
0
0
08 Nov 2024
Improving Diffusion Inverse Problem Solving with Decoupled Noise
  Annealing
Improving Diffusion Inverse Problem Solving with Decoupled Noise Annealing
Bingliang Zhang
Wenda Chu
Julius Berner
Chenlin Meng
Anima Anandkumar
Yang Song
DiffM
29
25
0
01 Jul 2024
Visual Privacy Auditing with Diffusion Models
Visual Privacy Auditing with Diffusion Models
Kristian Schwethelm
Johannes Kaiser
Moritz Knolle
Daniel Rueckert
Daniel Rueckert
Alexander Ziller
DiffM
AAML
31
0
0
12 Mar 2024
Denoising diffusion-based synthetic generation of three-dimensional (3D)
  anisotropic microstructures from two-dimensional (2D) micrographs
Denoising diffusion-based synthetic generation of three-dimensional (3D) anisotropic microstructures from two-dimensional (2D) micrographs
Kang-Hyun Lee
G. Yun
DiffM
19
2
0
13 Dec 2023
UnCRtainTS: Uncertainty Quantification for Cloud Removal in Optical
  Satellite Time Series
UnCRtainTS: Uncertainty Quantification for Cloud Removal in Optical Satellite Time Series
Patrick Ebel
Vivien Sainte Fare Garnot
M. Schmitt
Jan Dirk Wegner
Xiao Xiang Zhu
10
29
0
11 Apr 2023
Waving Goodbye to Low-Res: A Diffusion-Wavelet Approach for Image
  Super-Resolution
Waving Goodbye to Low-Res: A Diffusion-Wavelet Approach for Image Super-Resolution
Brian B. Moser
Stanislav Frolov
Federico Raue
Sebastián M. Palacio
Andreas Dengel
22
13
0
04 Apr 2023
LIT-Former: Linking In-plane and Through-plane Transformers for
  Simultaneous CT Image Denoising and Deblurring
LIT-Former: Linking In-plane and Through-plane Transformers for Simultaneous CT Image Denoising and Deblurring
Zhihao Chen
Chuang Niu
Qi Gao
Ge Wang
Hongming Shan
MedIm
ViT
3DV
23
19
0
21 Feb 2023
Diffusion Models for Medical Image Analysis: A Comprehensive Survey
Diffusion Models for Medical Image Analysis: A Comprehensive Survey
A. Kazerouni
Ehsan Khodapanah Aghdam
Moein Heidari
Reza Azad
Mohsen Fayyaz
I. Hacihaliloglu
Dorit Merhof
DiffM
MedIm
35
351
0
14 Nov 2022
Unsupervised Medical Image Translation with Adversarial Diffusion Models
Unsupervised Medical Image Translation with Adversarial Diffusion Models
Muzaffer Özbey
Onat Dalmaz
S. Dar
H. Bedel
cSaban Ozturk
Alper Gungor
Tolga cCukur
DiffM
MedIm
13
272
0
17 Jul 2022
Simultaneous super-resolution and motion artifact removal in
  diffusion-weighted MRI using unsupervised deep learning
Simultaneous super-resolution and motion artifact removal in diffusion-weighted MRI using unsupervised deep learning
Hyungjin Chung
Jaehyun Kim
J. Yoon
J. Lee
Jong Chul Ye
DiffM
MedIm
23
8
0
01 May 2021
Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images
Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images
Tao Huang
Songjiang Li
Xu Jia
Huchuan Lu
Jian-zhuo Liu
67
284
0
08 Jan 2021
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,042
0
06 Jun 2015
1