ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.13239
  4. Cited By
A Representation Separation Perspective to Correspondences-free
  Unsupervised 3D Point Cloud Registration

A Representation Separation Perspective to Correspondences-free Unsupervised 3D Point Cloud Registration

24 March 2022
Zhiyuan Zhang
Jiadai Sun
Yuchao Dai
Dingfu Zhou
Xibin Song
Mingyi He
    3DPC
ArXivPDFHTML

Papers citing "A Representation Separation Perspective to Correspondences-free Unsupervised 3D Point Cloud Registration"

2 / 2 papers shown
Title
Feature-metric Registration: A Fast Semi-supervised Approach for Robust
  Point Cloud Registration without Correspondences
Feature-metric Registration: A Fast Semi-supervised Approach for Robust Point Cloud Registration without Correspondences
Xiaoshui Huang
Guofeng Mei
Jian Andrew Zhang
3DPC
56
245
0
03 May 2020
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
222
14,087
0
02 Dec 2016
1