Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.13987
Cited By
On the Viability of Monocular Depth Pre-training for Semantic Segmentation
26 March 2022
Dong Lao
Fengyu Yang
Daniel Wang
Hyoungseob Park
Samuel Lu
Alex Wong
Stefano Soatto
MDE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Viability of Monocular Depth Pre-training for Semantic Segmentation"
6 / 6 papers shown
Title
Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data
Lihe Yang
Bingyi Kang
Zilong Huang
Xiaogang Xu
Jiashi Feng
Hengshuang Zhao
VLM
139
681
0
19 Jan 2024
Battle of the Backbones: A Large-Scale Comparison of Pretrained Models across Computer Vision Tasks
Micah Goldblum
Hossein Souri
Renkun Ni
Manli Shu
Viraj Prabhu
...
Adrien Bardes
Judy Hoffman
Ramalingam Chellappa
Andrew Gordon Wilson
Tom Goldstein
VLM
68
62
0
30 Oct 2023
AugUndo: Scaling Up Augmentations for Unsupervised Depth Completion
Yangchao Wu
Tian Yu Liu
Hyoungseob Park
Stefano Soatto
Dong Lao
Alex Wong
35
4
0
15 Oct 2023
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
258
7,337
0
11 Nov 2021
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
283
5,723
0
29 Apr 2021
Improved Baselines with Momentum Contrastive Learning
Xinlei Chen
Haoqi Fan
Ross B. Girshick
Kaiming He
SSL
238
3,359
0
09 Mar 2020
1