Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.15209
Cited By
OrphicX: A Causality-Inspired Latent Variable Model for Interpreting Graph Neural Networks
29 March 2022
Wanyu Lin
Hao Lan
Hao Wang
Baochun Li
BDL
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"OrphicX: A Causality-Inspired Latent Variable Model for Interpreting Graph Neural Networks"
34 / 34 papers shown
Title
i-WiViG: Interpretable Window Vision GNN
Ivica Obadic
D. Kangin
Dario Augusto Borges Oliveira
Plamen Angelov
Xiao Xiang Zhu
54
0
0
11 Mar 2025
Energy-Based Concept Bottleneck Models: Unifying Prediction, Concept Intervention, and Probabilistic Interpretations
Xin-Chao Xu
Yi Qin
Lu Mi
Hao Wang
X. Li
66
9
0
03 Jan 2025
PAGE: Parametric Generative Explainer for Graph Neural Network
Yang Qiu
Wei Liu
Jun Wang
Ruixuan Li
BDL
23
0
0
26 Aug 2024
Towards Few-shot Self-explaining Graph Neural Networks
Jingyu Peng
Qi Liu
Linan Yue
Zaixi Zhang
Kai Zhang
Yunhao Sha
MILM
19
2
0
14 Aug 2024
Graph Neural Network Causal Explanation via Neural Causal Models
Arman Behnam
Binghui Wang
CML
40
3
0
12 Jul 2024
How Interpretable Are Interpretable Graph Neural Networks?
Yongqiang Chen
Yatao Bian
Bo Han
James Cheng
42
4
0
12 Jun 2024
Explainable Molecular Property Prediction: Aligning Chemical Concepts with Predictions via Language Models
Zhenzhong Wang
Zehui Lin
Wanyu Lin
Ming Yang
Minggang Zeng
Kay Chen Tan
21
3
0
25 May 2024
SynHING: Synthetic Heterogeneous Information Network Generation for Graph Learning and Explanation
Ming-Yi Hong
Yi-Hsiang Huang
Shao-En Lin
You-Chen Teng
Chih-Yu Wang
Che Lin
33
0
0
07 Jan 2024
Causal State Distillation for Explainable Reinforcement Learning
Wenhao Lu
Xufeng Zhao
Thilo Fryen
Jae Hee Lee
Mengdi Li
S. Magg
Stefan Wermter
CML
33
2
0
30 Dec 2023
When Graph Neural Network Meets Causality: Opportunities, Methodologies and An Outlook
Wenzhao Jiang
Hao Liu
Hui Xiong
CML
AI4CE
24
2
0
19 Dec 2023
Predicting and Interpreting Energy Barriers of Metallic Glasses with Graph Neural Networks
Haoyu Li
Shichang Zhang
Longwen Tang
Mathieu Bauchy
Yizhou Sun
AI4CE
35
1
0
08 Dec 2023
Exploring Causal Learning through Graph Neural Networks: An In-depth Review
Simi Job
Xiaohui Tao
Taotao Cai
Haoran Xie
Lin Li
Jianming Yong
Qing Li
CML
AI4CE
19
5
0
25 Nov 2023
Generative Explanations for Graph Neural Network: Methods and Evaluations
Jialin Chen
Kenza Amara
Junchi Yu
Rex Ying
37
3
0
09 Nov 2023
ACGAN-GNNExplainer: Auxiliary Conditional Generative Explainer for Graph Neural Networks
Yiqiao Li
Jianlong Zhou
Yifei Dong
Niusha Shafiabady
Fang Chen
LLMAG
11
4
0
29 Sep 2023
Structure-Sensitive Graph Dictionary Embedding for Graph Classification
Guangyi Liu
Tong Zhang
Xudong Wang
Wenting Zhao
Chuanwei Zhou
Zhen Cui
25
1
0
18 Jun 2023
Self-Interpretable Time Series Prediction with Counterfactual Explanations
Jingquan Yan
Hao Wang
BDL
AI4TS
8
13
0
09 Jun 2023
Efficient GNN Explanation via Learning Removal-based Attribution
Yao Rong
Guanchu Wang
Qizhang Feng
Ninghao Liu
Zirui Liu
Enkelejda Kasneci
Xia Hu
15
9
0
09 Jun 2023
A Survey on Explainability of Graph Neural Networks
Jaykumar Kakkad
Jaspal Jannu
Kartik Sharma
Charu C. Aggarwal
Sourav Medya
28
23
0
02 Jun 2023
Unstructured and structured data: Can we have the best of both worlds with large language models?
W. Tan
11
1
0
25 Apr 2023
Dynamic Graph Representation Learning with Neural Networks: A Survey
Leshanshui Yang
Sébastien Adam
Clément Chatelain
AI4TS
AI4CE
26
14
0
12 Apr 2023
Distill n' Explain: explaining graph neural networks using simple surrogates
Tamara A. Pereira
Erik Nasciment
Lucas Resck
Diego Mesquita
Amauri Souza
22
15
0
17 Mar 2023
Causal Temporal Graph Convolutional Neural Networks (CTGCN)
Abigail Langbridge
Fearghal O'Donncha
Amadou Ba
Fabio Lorenzi
Christopher Lohse
J. Ploennigs
GNN
15
1
0
16 Mar 2023
PaGE-Link: Path-based Graph Neural Network Explanation for Heterogeneous Link Prediction
Shichang Zhang
Jiani Zhang
Xiang Song
Soji Adeshina
Da Zheng
Christos Faloutsos
Yizhou Sun
LRM
17
31
0
24 Feb 2023
CI-GNN: A Granger Causality-Inspired Graph Neural Network for Interpretable Brain Network-Based Psychiatric Diagnosis
Kaizhong Zheng
Shujian Yu
Badong Chen
CML
21
31
0
04 Jan 2023
Explaining the Explainers in Graph Neural Networks: a Comparative Study
Antonio Longa
Steve Azzolin
G. Santin
G. Cencetti
Pietro Lio'
Bruno Lepri
Andrea Passerini
46
27
0
27 Oct 2022
Global Explainability of GNNs via Logic Combination of Learned Concepts
Steve Azzolin
Antonio Longa
Pietro Barbiero
Pietro Lio'
Andrea Passerini
25
54
0
13 Oct 2022
L2XGNN: Learning to Explain Graph Neural Networks
G. Serra
Mathias Niepert
26
7
0
28 Sep 2022
GNNInterpreter: A Probabilistic Generative Model-Level Explanation for Graph Neural Networks
Xiaoqi Wang
Hang Shen
22
41
0
15 Sep 2022
Trustworthy Graph Neural Networks: Aspects, Methods and Trends
He Zhang
Bang Wu
Xingliang Yuan
Shirui Pan
Hanghang Tong
Jian Pei
41
104
0
16 May 2022
Causal Transportability for Visual Recognition
Chengzhi Mao
K. Xia
James Wang
Hongya Wang
Junfeng Yang
Elias Bareinboim
Carl Vondrick
CML
OOD
BDL
15
35
0
26 Apr 2022
Task-Agnostic Graph Explanations
Yaochen Xie
S. Katariya
Xianfeng Tang
E-Wen Huang
Nikhil S. Rao
Karthik Subbian
Shuiwang Ji
21
25
0
16 Feb 2022
GStarX: Explaining Graph Neural Networks with Structure-Aware Cooperative Games
Shichang Zhang
Yozen Liu
Neil Shah
Yizhou Sun
FAtt
23
45
0
28 Jan 2022
Instrumental Variable-Driven Domain Generalization with Unobserved Confounders
Junkun Yuan
Xu Ma
Ruoxuan Xiong
Mingming Gong
Xiangyu Liu
Fei Wu
Lanfen Lin
Kun Kuang
OOD
CML
18
11
0
04 Oct 2021
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,811
0
25 Nov 2016
1