ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.16462
  4. Cited By
Convergence of gradient descent for deep neural networks

Convergence of gradient descent for deep neural networks

30 March 2022
S. Chatterjee
    ODL
ArXivPDFHTML

Papers citing "Convergence of gradient descent for deep neural networks"

14 / 14 papers shown
Title
Convergence of Shallow ReLU Networks on Weakly Interacting Data
Convergence of Shallow ReLU Networks on Weakly Interacting Data
Léo Dana
Francis R. Bach
Loucas Pillaud-Vivien
MLT
47
1
0
24 Feb 2025
Convergence of continuous-time stochastic gradient descent with
  applications to linear deep neural networks
Convergence of continuous-time stochastic gradient descent with applications to linear deep neural networks
Gabor Lugosi
Eulalia Nualart
13
0
0
11 Sep 2024
Almost sure convergence rates of stochastic gradient methods under gradient domination
Almost sure convergence rates of stochastic gradient methods under gradient domination
Simon Weissmann
Sara Klein
Waïss Azizian
Leif Döring
34
3
0
22 May 2024
Understanding the training of infinitely deep and wide ResNets with
  Conditional Optimal Transport
Understanding the training of infinitely deep and wide ResNets with Conditional Optimal Transport
Raphael Barboni
Gabriel Peyré
Franccois-Xavier Vialard
30
3
0
19 Mar 2024
Non-convergence to global minimizers for Adam and stochastic gradient
  descent optimization and constructions of local minimizers in the training of
  artificial neural networks
Non-convergence to global minimizers for Adam and stochastic gradient descent optimization and constructions of local minimizers in the training of artificial neural networks
Arnulf Jentzen
Adrian Riekert
33
4
0
07 Feb 2024
Convergence Analysis for Learning Orthonormal Deep Linear Neural
  Networks
Convergence Analysis for Learning Orthonormal Deep Linear Neural Networks
Zhen Qin
Xuwei Tan
Zhihui Zhu
32
0
0
24 Nov 2023
Convergence of stochastic gradient descent under a local Lojasiewicz
  condition for deep neural networks
Convergence of stochastic gradient descent under a local Lojasiewicz condition for deep neural networks
Jing An
Jianfeng Lu
16
4
0
18 Apr 2023
Spectral Evolution and Invariance in Linear-width Neural Networks
Spectral Evolution and Invariance in Linear-width Neural Networks
Zhichao Wang
A. Engel
Anand D. Sarwate
Ioana Dumitriu
Tony Chiang
40
14
0
11 Nov 2022
Global Convergence of SGD On Two Layer Neural Nets
Global Convergence of SGD On Two Layer Neural Nets
Pulkit Gopalani
Anirbit Mukherjee
18
5
0
20 Oct 2022
From Gradient Flow on Population Loss to Learning with Stochastic
  Gradient Descent
From Gradient Flow on Population Loss to Learning with Stochastic Gradient Descent
Satyen Kale
Jason D. Lee
Chris De Sa
Ayush Sekhari
Karthik Sridharan
19
4
0
13 Oct 2022
Gradient flow dynamics of shallow ReLU networks for square loss and
  orthogonal inputs
Gradient flow dynamics of shallow ReLU networks for square loss and orthogonal inputs
Etienne Boursier
Loucas Pillaud-Vivien
Nicolas Flammarion
ODL
19
58
0
02 Jun 2022
Beyond Lipschitz: Sharp Generalization and Excess Risk Bounds for
  Full-Batch GD
Beyond Lipschitz: Sharp Generalization and Excess Risk Bounds for Full-Batch GD
Konstantinos E. Nikolakakis
Farzin Haddadpour
Amin Karbasi
Dionysios S. Kalogerias
22
17
0
26 Apr 2022
From Optimization Dynamics to Generalization Bounds via Łojasiewicz
  Gradient Inequality
From Optimization Dynamics to Generalization Bounds via Łojasiewicz Gradient Inequality
Fusheng Liu
Haizhao Yang
Soufiane Hayou
Qianxiao Li
AI4CE
11
2
0
22 Feb 2022
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
121
1,198
0
16 Aug 2016
1