Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.16462
Cited By
Convergence of gradient descent for deep neural networks
30 March 2022
S. Chatterjee
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Convergence of gradient descent for deep neural networks"
14 / 14 papers shown
Title
Convergence of Shallow ReLU Networks on Weakly Interacting Data
Léo Dana
Francis R. Bach
Loucas Pillaud-Vivien
MLT
47
1
0
24 Feb 2025
Convergence of continuous-time stochastic gradient descent with applications to linear deep neural networks
Gabor Lugosi
Eulalia Nualart
13
0
0
11 Sep 2024
Almost sure convergence rates of stochastic gradient methods under gradient domination
Simon Weissmann
Sara Klein
Waïss Azizian
Leif Döring
34
3
0
22 May 2024
Understanding the training of infinitely deep and wide ResNets with Conditional Optimal Transport
Raphael Barboni
Gabriel Peyré
Franccois-Xavier Vialard
30
3
0
19 Mar 2024
Non-convergence to global minimizers for Adam and stochastic gradient descent optimization and constructions of local minimizers in the training of artificial neural networks
Arnulf Jentzen
Adrian Riekert
33
4
0
07 Feb 2024
Convergence Analysis for Learning Orthonormal Deep Linear Neural Networks
Zhen Qin
Xuwei Tan
Zhihui Zhu
32
0
0
24 Nov 2023
Convergence of stochastic gradient descent under a local Lojasiewicz condition for deep neural networks
Jing An
Jianfeng Lu
16
4
0
18 Apr 2023
Spectral Evolution and Invariance in Linear-width Neural Networks
Zhichao Wang
A. Engel
Anand D. Sarwate
Ioana Dumitriu
Tony Chiang
40
14
0
11 Nov 2022
Global Convergence of SGD On Two Layer Neural Nets
Pulkit Gopalani
Anirbit Mukherjee
18
5
0
20 Oct 2022
From Gradient Flow on Population Loss to Learning with Stochastic Gradient Descent
Satyen Kale
Jason D. Lee
Chris De Sa
Ayush Sekhari
Karthik Sridharan
19
4
0
13 Oct 2022
Gradient flow dynamics of shallow ReLU networks for square loss and orthogonal inputs
Etienne Boursier
Loucas Pillaud-Vivien
Nicolas Flammarion
ODL
19
58
0
02 Jun 2022
Beyond Lipschitz: Sharp Generalization and Excess Risk Bounds for Full-Batch GD
Konstantinos E. Nikolakakis
Farzin Haddadpour
Amin Karbasi
Dionysios S. Kalogerias
22
17
0
26 Apr 2022
From Optimization Dynamics to Generalization Bounds via Łojasiewicz Gradient Inequality
Fusheng Liu
Haizhao Yang
Soufiane Hayou
Qianxiao Li
AI4CE
11
2
0
22 Feb 2022
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
121
1,198
0
16 Aug 2016
1