Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2204.00032
Cited By
Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets
31 March 2022
Florian Tramèr
Reza Shokri
Ayrton San Joaquin
Hoang Minh Le
Matthew Jagielski
Sanghyun Hong
Nicholas Carlini
MIACV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets"
50 / 82 papers shown
Title
Disparate Privacy Vulnerability: Targeted Attribute Inference Attacks and Defenses
Ehsanul Kabir
Lucas Craig
Shagufta Mehnaz
MIACV
AAML
38
0
0
05 Apr 2025
Membership Inference Attacks fueled by Few-Short Learning to detect privacy leakage tackling data integrity
D. López
Nuria Rodríguez Barroso
M. V. Luzón
Francisco Herrera
58
0
0
12 Mar 2025
PoisonedParrot: Subtle Data Poisoning Attacks to Elicit Copyright-Infringing Content from Large Language Models
Michael-Andrei Panaitescu-Liess
Pankayaraj Pathmanathan
Yigitcan Kaya
Zora Che
Bang An
Sicheng Zhu
Aakriti Agrawal
Furong Huang
AAML
59
0
0
10 Mar 2025
Trustworthy Machine Learning via Memorization and the Granular Long-Tail: A Survey on Interactions, Tradeoffs, and Beyond
Qiongxiu Li
Xiaoyu Luo
Yiyi Chen
Johannes Bjerva
45
0
0
10 Mar 2025
A Survey on Adversarial Machine Learning for Code Data: Realistic Threats, Countermeasures, and Interpretations
Yulong Yang
Haoran Fan
Chenhao Lin
Qian Li
Zhengyu Zhao
Chao Shen
Xiaohong Guan
AAML
43
0
0
12 Nov 2024
Adversarially Guided Stateful Defense Against Backdoor Attacks in Federated Deep Learning
Hassan Ali
Surya Nepal
S. Kanhere
S. Jha
AAML
FedML
24
1
0
15 Oct 2024
Understanding Data Importance in Machine Learning Attacks: Does Valuable Data Pose Greater Harm?
Rui Wen
Michael Backes
Yang Zhang
TDI
AAML
41
0
0
05 Sep 2024
Differentially Private Kernel Density Estimation
Erzhi Liu
Jerry Yao-Chieh Hu
Alex Reneau
Zhao Song
Han Liu
66
3
0
03 Sep 2024
Forget to Flourish: Leveraging Machine-Unlearning on Pretrained Language Models for Privacy Leakage
Md. Rafi Ur Rashid
Jing Liu
T. Koike-Akino
Shagufta Mehnaz
Ye Wang
MU
SILM
38
3
0
30 Aug 2024
Pre-trained Encoder Inference: Revealing Upstream Encoders In Downstream Machine Learning Services
Shaopeng Fu
Xuexue Sun
Ke Qing
Tianhang Zheng
Di Wang
AAML
MIACV
SILM
53
0
0
05 Aug 2024
A Method to Facilitate Membership Inference Attacks in Deep Learning Models
Zitao Chen
Karthik Pattabiraman
MIACV
MLAU
AAML
MIALM
67
1
0
02 Jul 2024
Silver Linings in the Shadows: Harnessing Membership Inference for Machine Unlearning
Nexhi Sula
Abhinav Kumar
Jie Hou
Han Wang
R. Tourani
MU
23
0
0
01 Jul 2024
Noisy Neighbors: Efficient membership inference attacks against LLMs
Filippo Galli
Luca Melis
Tommaso Cucinotta
44
7
0
24 Jun 2024
Rethinking the impact of noisy labels in graph classification: A utility and privacy perspective
De Li
Xianxian Li
Zeming Gan
Qiyu Li
Bin Qu
Jinyan Wang
NoLa
40
1
0
11 Jun 2024
Memorized Images in Diffusion Models share a Subspace that can be Located and Deleted
Ruchika Chavhan
Ondrej Bohdal
Yongshuo Zong
Da Li
Timothy M. Hospedales
31
4
0
01 Jun 2024
Phantom: General Trigger Attacks on Retrieval Augmented Language Generation
Harsh Chaudhari
Giorgio Severi
John Abascal
Matthew Jagielski
Christopher A. Choquette-Choo
Milad Nasr
Cristina Nita-Rotaru
Alina Oprea
SILM
AAML
72
28
0
30 May 2024
Safety in Graph Machine Learning: Threats and Safeguards
Song Wang
Yushun Dong
Binchi Zhang
Zihan Chen
Xingbo Fu
Yinhan He
Cong Shen
Chuxu Zhang
Nitesh V. Chawla
Jundong Li
45
7
0
17 May 2024
Privacy-Preserving Edge Federated Learning for Intelligent Mobile-Health Systems
Amin Aminifar
Matin Shokri
Amir Aminifar
FedML
29
8
0
09 May 2024
SpamDam: Towards Privacy-Preserving and Adversary-Resistant SMS Spam Detection
Yekai Li
Rufan Zhang
Wenxin Rong
Xianghang Mi
28
2
0
15 Apr 2024
Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models
Yuxin Wen
Leo Marchyok
Sanghyun Hong
Jonas Geiping
Tom Goldstein
Nicholas Carlini
SILM
AAML
26
9
0
01 Apr 2024
Privacy Backdoors: Stealing Data with Corrupted Pretrained Models
Shanglun Feng
Florian Tramèr
SILM
38
14
0
30 Mar 2024
Don't Listen To Me: Understanding and Exploring Jailbreak Prompts of Large Language Models
Zhiyuan Yu
Xiaogeng Liu
Shunning Liang
Zach Cameron
Chaowei Xiao
Ning Zhang
28
40
0
26 Mar 2024
Improving Robustness to Model Inversion Attacks via Sparse Coding Architectures
S. V. Dibbo
Adam Breuer
Juston S. Moore
Michael Teti
AAML
35
4
0
21 Mar 2024
PreCurious: How Innocent Pre-Trained Language Models Turn into Privacy Traps
Ruixuan Liu
Tianhao Wang
Yang Cao
Li Xiong
AAML
SILM
48
15
0
14 Mar 2024
Efficiently Computing Similarities to Private Datasets
A. Backurs
Zinan Lin
S. Mahabadi
Sandeep Silwal
Jakub Tarnawski
65
4
0
13 Mar 2024
Teach LLMs to Phish: Stealing Private Information from Language Models
Ashwinee Panda
Christopher A. Choquette-Choo
Zhengming Zhang
Yaoqing Yang
Prateek Mittal
PILM
32
20
0
01 Mar 2024
Learning to Poison Large Language Models During Instruction Tuning
Yao Qiang
Xiangyu Zhou
Saleh Zare Zade
Mohammad Amin Roshani
Douglas Zytko
Dongxiao Zhu
AAML
SILM
32
20
0
21 Feb 2024
Auditing Private Prediction
Karan Chadha
Matthew Jagielski
Nicolas Papernot
Christopher A. Choquette-Choo
Milad Nasr
30
4
0
14 Feb 2024
Comprehensive Assessment of Jailbreak Attacks Against LLMs
Junjie Chu
Yugeng Liu
Ziqing Yang
Xinyue Shen
Michael Backes
Yang Zhang
AAML
35
65
0
08 Feb 2024
Attacking Byzantine Robust Aggregation in High Dimensions
Sarthak Choudhary
Aashish Kolluri
Prateek Saxena
AAML
27
1
0
22 Dec 2023
GraphGuard: Detecting and Counteracting Training Data Misuse in Graph Neural Networks
Bang Wu
He Zhang
Xiangwen Yang
Shuo Wang
Minhui Xue
Shirui Pan
Xingliang Yuan
59
6
0
13 Dec 2023
SoK: Unintended Interactions among Machine Learning Defenses and Risks
Vasisht Duddu
S. Szyller
Nadarajah Asokan
AAML
47
2
0
07 Dec 2023
Transpose Attack: Stealing Datasets with Bidirectional Training
Guy Amit
Mosh Levy
Yisroel Mirsky
SILM
AAML
41
0
0
13 Nov 2023
SoK: Memorisation in machine learning
Dmitrii Usynin
Moritz Knolle
Georgios Kaissis
17
1
0
06 Nov 2023
Where have you been? A Study of Privacy Risk for Point-of-Interest Recommendation
Kunlin Cai
Jinghuai Zhang
Zhiqing Hong
Will Shand
Guang Wang
Desheng Zhang
Jianfeng Chi
Yuan Tian
16
1
0
28 Oct 2023
Unintended Memorization in Large ASR Models, and How to Mitigate It
Lun Wang
Om Thakkar
Rajiv Mathews
33
5
0
18 Oct 2023
Defending Our Privacy With Backdoors
Dominik Hintersdorf
Lukas Struppek
Daniel Neider
Kristian Kersting
SILM
AAML
18
2
0
12 Oct 2023
Chameleon: Increasing Label-Only Membership Leakage with Adaptive Poisoning
Harsh Chaudhari
Giorgio Severi
Alina Oprea
Jonathan R. Ullman
23
5
0
05 Oct 2023
Privacy Side Channels in Machine Learning Systems
Edoardo Debenedetti
Giorgio Severi
Nicholas Carlini
Christopher A. Choquette-Choo
Matthew Jagielski
Milad Nasr
Eric Wallace
Florian Tramèr
MIALM
38
38
0
11 Sep 2023
Self-Deception: Reverse Penetrating the Semantic Firewall of Large Language Models
Zhenhua Wang
Wei Xie
Kai Chen
Baosheng Wang
Zhiwen Gui
Enze Wang
AAML
SILM
20
6
0
16 Aug 2023
"Do Anything Now": Characterizing and Evaluating In-The-Wild Jailbreak Prompts on Large Language Models
Xinyue Shen
Z. Chen
Michael Backes
Yun Shen
Yang Zhang
SILM
33
244
0
07 Aug 2023
VertexSerum: Poisoning Graph Neural Networks for Link Inference
Ruyi Ding
Shijin Duan
Xiaolin Xu
Yunsi Fei
AAML
GNN
32
4
0
02 Aug 2023
Co(ve)rtex: ML Models as storage channels and their (mis-)applications
Md Abdullah Al Mamun
Quazi Mishkatul Alam
Erfan Shayegani
Pedram Zaree
Ihsen Alouani
Nael B. Abu-Ghazaleh
37
0
0
17 Jul 2023
Membership Inference Attacks on DNNs using Adversarial Perturbations
Hassan Ali
Adnan Qayyum
Ala I. Al-Fuqaha
Junaid Qadir
AAML
24
3
0
11 Jul 2023
Overconfidence is a Dangerous Thing: Mitigating Membership Inference Attacks by Enforcing Less Confident Prediction
Zitao Chen
Karthik Pattabiraman
15
20
0
04 Jul 2023
On the Exploitability of Instruction Tuning
Manli Shu
Jiong Wang
Chen Zhu
Jonas Geiping
Chaowei Xiao
Tom Goldstein
SILM
25
91
0
28 Jun 2023
TMI! Finetuned Models Leak Private Information from their Pretraining Data
John Abascal
Stanley Wu
Alina Oprea
Jonathan R. Ullman
31
16
0
01 Jun 2023
A Note On Interpreting Canary Exposure
Matthew Jagielski
16
4
0
31 May 2023
Unleashing the Power of Randomization in Auditing Differentially Private ML
Krishna Pillutla
Galen Andrew
Peter Kairouz
H. B. McMahan
Alina Oprea
Sewoong Oh
30
20
0
29 May 2023
Differentially Private Synthetic Data via Foundation Model APIs 1: Images
Zi-Han Lin
Sivakanth Gopi
Janardhan Kulkarni
Harsha Nori
Sergey Yekhanin
39
36
0
24 May 2023
1
2
Next