ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.00950
  4. Cited By
Risk-Aware Control and Optimization for High-Renewable Power Grids

Risk-Aware Control and Optimization for High-Renewable Power Grids

2 April 2022
Neil Barry
Minas Chatzos
Wenbo Chen
Dahye Han
Chao-Ming Huang
Roshan Joseph
Michael Klamkin
Seon-youl Park
Mathieu Tanneau
Pascal Van Hentenryck
Shangkun Wang
Hanyu Zhang
Haoruo Zhao
ArXivPDFHTML

Papers citing "Risk-Aware Control and Optimization for High-Renewable Power Grids"

4 / 4 papers shown
Title
Data Twinning
Data Twinning
Akhil Vakayil
V. R. Joseph
13
19
0
06 Oct 2021
Spatial Network Decomposition for Fast and Scalable AC-OPF Learning
Spatial Network Decomposition for Fast and Scalable AC-OPF Learning
Minas Chatzos
Terrence W.K. Mak
Pascal Van Hentenryck
AI4CE
27
38
0
17 Jan 2021
Predicting AC Optimal Power Flows: Combining Deep Learning and
  Lagrangian Dual Methods
Predicting AC Optimal Power Flows: Combining Deep Learning and Lagrangian Dual Methods
Ferdinando Fioretto
Terrence W.K. Mak
Pascal Van Hentenryck
AI4CE
76
198
0
19 Sep 2019
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
243
9,042
0
06 Jun 2015
1