Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2204.01368
Cited By
Training Fully Connected Neural Networks is
∃
R
\exists\mathbb{R}
∃
R
-Complete
4 April 2022
Daniel Bertschinger
Christoph Hertrich
Paul Jungeblut
Tillmann Miltzow
Simon Weber
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Training Fully Connected Neural Networks is $\exists\mathbb{R}$-Complete"
16 / 16 papers shown
Title
Logical perspectives on learning statistical objects
Aaron Anderson
Michael Benedikt
49
0
0
01 Apr 2025
On the Expressiveness of Rational ReLU Neural Networks With Bounded Depth
Gennadiy Averkov
Christopher Hojny
Maximilian Merkert
73
3
0
10 Feb 2025
On the Complexity of Identification in Linear Structural Causal Models
Julian Dörfler
Benito van der Zander
Markus Bläser
Maciej Liskiewicz
CML
18
0
0
17 Jul 2024
Graph Neural Networks and Arithmetic Circuits
Timon Barlag
Vivian Holzapfel
Laura Strieker
Jonni Virtema
H. Vollmer
GNN
22
0
0
27 Feb 2024
Polynomial-Time Solutions for ReLU Network Training: A Complexity Classification via Max-Cut and Zonotopes
Yifei Wang
Mert Pilanci
11
3
0
18 Nov 2023
Complexity of Neural Network Training and ETR: Extensions with Effectively Continuous Functions
Teemu Hankala
Miika Hannula
J. Kontinen
Jonni Virtema
12
6
0
19 May 2023
When Deep Learning Meets Polyhedral Theory: A Survey
Joey Huchette
Gonzalo Muñoz
Thiago Serra
Calvin Tsay
AI4CE
84
32
0
29 Apr 2023
Training Neural Networks is NP-Hard in Fixed Dimension
Vincent Froese
Christoph Hertrich
36
4
0
29 Mar 2023
Lower Bounds on the Depth of Integral ReLU Neural Networks via Lattice Polytopes
Christian Haase
Christoph Hertrich
Georg Loho
11
12
0
24 Feb 2023
Neural networks with linear threshold activations: structure and algorithms
Sammy Khalife
Hongyu Cheng
A. Basu
18
10
0
15 Nov 2021
On Classifying Continuous Constraint Satisfaction Problems
Tillmann Miltzow
R. F. Schmiermann
22
19
0
04 Jun 2021
Towards Lower Bounds on the Depth of ReLU Neural Networks
Christoph Hertrich
A. Basu
M. D. Summa
M. Skutella
19
31
0
31 May 2021
The Computational Complexity of ReLU Network Training Parameterized by Data Dimensionality
Vincent Froese
Christoph Hertrich
R. Niedermeier
8
17
0
18 May 2021
ReLU Neural Networks of Polynomial Size for Exact Maximum Flow Computation
Christoph Hertrich
Leon Sering
8
10
0
12 Feb 2021
Provably Good Solutions to the Knapsack Problem via Neural Networks of Bounded Size
Christoph Hertrich
M. Skutella
36
12
0
28 May 2020
Benefits of depth in neural networks
Matus Telgarsky
121
600
0
14 Feb 2016
1