Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2204.05249
Cited By
Learning Local Equivariant Representations for Large-Scale Atomistic Dynamics
11 April 2022
Albert Musaelian
Simon L. Batzner
A. Johansson
Lixin Sun
Cameron J. Owen
M. Kornbluth
Boris Kozinsky
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Local Equivariant Representations for Large-Scale Atomistic Dynamics"
38 / 38 papers shown
Title
Representing spherical tensors with scalar-based machine-learning models
Michelangelo Domina
Filippo Bigi
Paolo Pegolo
Michele Ceriotti
45
0
0
08 May 2025
Data Fusion of Deep Learned Molecular Embeddings for Property Prediction
Robert Appleton
Brian C Barnes
Alejandro Strachan
FedML
AI4CE
34
0
0
09 Apr 2025
Quantifying Robustness: A Benchmarking Framework for Deep Learning Forecasting in Cyber-Physical Systems
Alexander Windmann
Henrik S. Steude
Daniel Boschmann
Oliver Niggemann
OOD
AI4TS
33
0
0
04 Apr 2025
Optimal Invariant Bases for Atomistic Machine Learning
Alice Allen
Emily Shinkle
Roxana Bujack
Nicholas Lubbers
37
0
0
30 Mar 2025
A practical guide to machine learning interatomic potentials -- Status and future
Ryan Jacobs
D. Morgan
Siamak Attarian
Jun Meng
Chen Shen
...
K. J. Schmidt
So Takamoto
Aidan Thompson
Julia Westermayr
Brandon M. Wood
55
4
0
12 Mar 2025
Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular Systems
Yunyang Li
Zaishuo Xia
Lin Huang
Xinran Wei
Han Yang
...
Zun Wang
Chang-Shu Liu
Jia Zhang
Bin Shao
Mark B. Gerstein
77
0
0
26 Feb 2025
Deep Neural Network for Phonon-Assisted Optical Spectra in Semiconductors
Qiangqiang Gu
S. K. Pandey
Zhanghao Zhouyin
59
0
0
02 Feb 2025
Learning local equivariant representations for quantum operators
Zhanghao Zhouyin
Zixi Gan
MingKang Liu
S. K. Pandey
Linfeng Zhang
Qiangqiang Gu
72
3
0
28 Jan 2025
NeuralDEM -- Real-time Simulation of Industrial Particulate Flows
Benedikt Alkin
Tobias Kronlachner
Samuele Papa
Stefan Pirker
Thomas Lichtenegger
Johannes Brandstetter
PINN
AI4CE
50
1
1
14 Nov 2024
chemtrain: Learning Deep Potential Models via Automatic Differentiation and Statistical Physics
Paul Fuchs
Stephan Thaler
Sebastien Röcken
J. Zavadlav
DiffM
70
6
0
28 Aug 2024
Physics-Informed Weakly Supervised Learning for Interatomic Potentials
Makoto Takamoto
Viktor Zaverkin
Mathias Niepert
AI4CE
60
0
0
23 Jul 2024
GeoMFormer: A General Architecture for Geometric Molecular Representation Learning
Tianlang Chen
Shengjie Luo
Di He
Shuxin Zheng
Tie-Yan Liu
Liwei Wang
AI4CE
38
5
0
24 Jun 2024
Molecule Graph Networks with Many-body Equivariant Interactions
Zetian Mao
Jiawen Li
Chen Liang
Diptesh Das
Masato Sumita
Koji Tsuda
Kelin Xia
Koji Tsuda
35
1
0
19 Jun 2024
Machine learning Hubbard parameters with equivariant neural networks
M. Uhrin
A. Zadoks
Luca Binci
Nicola Marzari
I. Timrov
25
6
0
04 Jun 2024
FeNNol: an Efficient and Flexible Library for Building Force-field-enhanced Neural Network Potentials
Thomas Plé
Olivier Adjoua
Louis Lagardère
Jean‐Philip Piquemal
30
8
0
02 May 2024
Grappa -- A Machine Learned Molecular Mechanics Force Field
Leif Seute
Eric Hartmann
Jan Stühmer
Frauke Gräter
29
3
0
25 Mar 2024
A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications
Jiaqi Han
Jiacheng Cen
Liming Wu
Zongzhao Li
Xiangzhe Kong
...
Zhewei Wei
Deli Zhao
Yu Rong
Wenbing Huang
Wenbing Huang
AI4CE
34
20
0
01 Mar 2024
On the Completeness of Invariant Geometric Deep Learning Models
Zian Li
Xiyuan Wang
Shijia Kang
Muhan Zhang
33
2
0
07 Feb 2024
H-Packer: Holographic Rotationally Equivariant Convolutional Neural Network for Protein Side-Chain Packing
Gian Marco Visani
William Galvin
Michael N. Pun
Armita Nourmohammad
22
5
0
15 Nov 2023
From Molecules to Materials: Pre-training Large Generalizable Models for Atomic Property Prediction
Nima Shoghi
Adeesh Kolluru
John R. Kitchin
Zachary W. Ulissi
C. L. Zitnick
Brandon M. Wood
AI4CE
22
32
0
25 Oct 2023
On the importance of catalyst-adsorbate 3D interactions for relaxed energy predictions
Alvaro Carbonero
Alexandre Duval
Victor Schmidt
Santiago Miret
Alex Hernandez-Garcia
Yoshua Bengio
David Rolnick
32
0
0
10 Oct 2023
OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials
Peter K. Eastman
Raimondas Galvelis
Raúl P. Peláez
C. Abreu
Stephen E. Farr
...
Yuanqing Wang
Ivy Zhang
J. Chodera
Gianni de Fabritiis
T. Markland
AI4CE
VLM
28
37
0
04 Oct 2023
EGraFFBench: Evaluation of Equivariant Graph Neural Network Force Fields for Atomistic Simulations
Vaibhav Bihani
Utkarsh Pratiush
Sajid Mannan
Tao Du
Zhimin Chen
Santiago Miret
Matthieu Micoulaut
M. Smedskjaer
Sayan Ranu
N. M. A. Krishnan
24
19
0
03 Oct 2023
LagrangeBench: A Lagrangian Fluid Mechanics Benchmarking Suite
Stefania Costantini
Gianluca Galletti
Fabian Fritz
Stefan Adami
Nikolaus A. Adams
40
13
0
28 Sep 2023
Beyond MD17: the reactive xxMD dataset
Zihan Pengmei
Junyu Liu
Yinan Shu
21
6
0
22 Aug 2023
SE(3) Equivariant Augmented Coupling Flows
Laurence I. Midgley
Vincent Stimper
Javier Antorán
Emile Mathieu
Bernhard Schölkopf
José Miguel Hernández-Lobato
35
22
0
20 Aug 2023
QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
Haiyang Yu
Meng Liu
Youzhi Luo
A. Strasser
X. Qian
Xiaoning Qian
Shuiwang Ji
15
20
0
15 Jun 2023
Generalist Equivariant Transformer Towards 3D Molecular Interaction Learning
Xiangzhe Kong
Wen-bing Huang
Yang Liu
22
13
0
02 Jun 2023
Scaling the leading accuracy of deep equivariant models to biomolecular simulations of realistic size
Albert Musaelian
A. Johansson
Simon L. Batzner
Boris Kozinsky
27
48
0
20 Apr 2023
A new perspective on building efficient and expressive 3D equivariant graph neural networks
Weitao Du
Yuanqi Du
Limei Wang
Dieqiao Feng
Guifeng Wang
Shuiwang Ji
Carla P. Gomes
Zhixin Ma
AI4CE
27
33
0
07 Apr 2023
On the Relationships between Graph Neural Networks for the Simulation of Physical Systems and Classical Numerical Methods
Artur P. Toshev
Ludger Paehler
A. Panizza
Nikolaus A. Adams
AI4CE
PINN
11
5
0
31 Mar 2023
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs
Saro Passaro
C. L. Zitnick
3DPC
28
79
0
07 Feb 2023
Implicit Convolutional Kernels for Steerable CNNs
Maksim Zhdanov
Nico Hoffmann
Gabriele Cesa
29
5
0
12 Dec 2022
Fast Uncertainty Estimates in Deep Learning Interatomic Potentials
Albert J. W. Zhu
Simon L. Batzner
Albert Musaelian
Boris Kozinsky
22
45
0
17 Nov 2022
The Open MatSci ML Toolkit: A Flexible Framework for Machine Learning in Materials Science
Santiago Miret
Kin Long Kelvin Lee
Carmelo Gonzales
Marcel Nassar
Matthew Spellings
36
19
0
31 Oct 2022
e3nn: Euclidean Neural Networks
Mario Geiger
Tess E. Smidt
35
173
0
18 Jul 2022
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields
Ilyes Batatia
D. P. Kovács
G. Simm
Christoph Ortner
Gábor Csányi
36
441
0
15 Jun 2022
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
203
1,238
0
08 Jan 2021
1