ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.06233
  4. Cited By
Approximation of Lipschitz Functions using Deep Spline Neural Networks

Approximation of Lipschitz Functions using Deep Spline Neural Networks

13 April 2022
Sebastian Neumayer
Alexis Goujon
Pakshal Bohra
M. Unser
ArXivPDFHTML

Papers citing "Approximation of Lipschitz Functions using Deep Spline Neural Networks"

12 / 12 papers shown
Title
fKAN: Fractional Kolmogorov-Arnold Networks with trainable Jacobi basis
  functions
fKAN: Fractional Kolmogorov-Arnold Networks with trainable Jacobi basis functions
Alireza Afzal Aghaei
29
47
0
11 Jun 2024
1-Lipschitz Neural Networks are more expressive with N-Activations
1-Lipschitz Neural Networks are more expressive with N-Activations
Bernd Prach
Christoph H. Lampert
AAML
FAtt
24
0
0
10 Nov 2023
Compact: Approximating Complex Activation Functions for Secure
  Computation
Compact: Approximating Complex Activation Functions for Secure Computation
Mazharul Islam
Sunpreet S. Arora
Rahul Chatterjee
Peter Rindal
Maliheh Shirvanian
16
4
0
09 Sep 2023
Learning Weakly Convex Regularizers for Convergent Image-Reconstruction
  Algorithms
Learning Weakly Convex Regularizers for Convergent Image-Reconstruction Algorithms
Alexis Goujon
Sebastian Neumayer
M. Unser
41
23
0
21 Aug 2023
Provably Convergent Plug-and-Play Quasi-Newton Methods
Provably Convergent Plug-and-Play Quasi-Newton Methods
Hongwei Tan
Subhadip Mukherjee
Junqi Tang
Carola-Bibiane Schönlieb
31
13
0
09 Mar 2023
A Neural-Network-Based Convex Regularizer for Inverse Problems
A Neural-Network-Based Convex Regularizer for Inverse Problems
Alexis Goujon
Sebastian Neumayer
Pakshal Bohra
Stanislas Ducotterd
M. Unser
13
26
0
22 Nov 2022
Universal Time-Uniform Trajectory Approximation for Random Dynamical
  Systems with Recurrent Neural Networks
Universal Time-Uniform Trajectory Approximation for Random Dynamical Systems with Recurrent Neural Networks
A. Bishop
37
1
0
15 Nov 2022
Recurrent Neural Networks and Universal Approximation of Bayesian
  Filters
Recurrent Neural Networks and Universal Approximation of Bayesian Filters
A. Bishop
Edwin V. Bonilla
BDL
21
3
0
01 Nov 2022
Improving Lipschitz-Constrained Neural Networks by Learning Activation
  Functions
Improving Lipschitz-Constrained Neural Networks by Learning Activation Functions
Stanislas Ducotterd
Alexis Goujon
Pakshal Bohra
Dimitris Perdios
Sebastian Neumayer
M. Unser
35
12
0
28 Oct 2022
Rethinking Lipschitz Neural Networks and Certified Robustness: A Boolean
  Function Perspective
Rethinking Lipschitz Neural Networks and Certified Robustness: A Boolean Function Perspective
Bohang Zhang
Du Jiang
Di He
Liwei Wang
OOD
36
47
0
04 Oct 2022
On the Number of Regions of Piecewise Linear Neural Networks
On the Number of Regions of Piecewise Linear Neural Networks
Alexis Goujon
Arian Etemadi
M. Unser
39
13
0
17 Jun 2022
Improved deterministic l2 robustness on CIFAR-10 and CIFAR-100
Improved deterministic l2 robustness on CIFAR-10 and CIFAR-100
Sahil Singla
Surbhi Singla
S. Feizi
AAML
32
54
0
05 Aug 2021
1