ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.08263
  4. Cited By
Factual Error Correction for Abstractive Summaries Using Entity
  Retrieval

Factual Error Correction for Abstractive Summaries Using Entity Retrieval

IEEE Games Entertainment Media Conference (GEM), 2022
18 April 2022
Hwanhee Lee
Cheoneum Park
Seunghyun Yoon
Trung Bui
Franck Dernoncourt
Juae Kim
Kyomin Jung
    KELM
ArXiv (abs)PDFHTMLHuggingFace (1 upvotes)

Papers citing "Factual Error Correction for Abstractive Summaries Using Entity Retrieval"

7 / 7 papers shown
Generating Grounded Responses to Counter Misinformation via Learning Efficient Fine-Grained Critiques
Generating Grounded Responses to Counter Misinformation via Learning Efficient Fine-Grained CritiquesInternational Joint Conference on Artificial Intelligence (IJCAI), 2025
Xiaofei Xu
Xiuzhen Zhang
Ke Deng
HILM
257
0
0
06 Jun 2025
Factual Dialogue Summarization via Learning from Large Language Models
Factual Dialogue Summarization via Learning from Large Language Models
Rongxin Zhu
Jey Han Lau
Jianzhong Qi
HILM
268
6
0
20 Jun 2024
Background Knowledge Grounding for Readable, Relevant, and Factual
  Biomedical Lay Summaries
Background Knowledge Grounding for Readable, Relevant, and Factual Biomedical Lay Summaries
Domenic Rosati
HILM
154
0
0
03 May 2023
Envisioning the Next-Gen Document Reader
Envisioning the Next-Gen Document Reader
Catherine Yeh
Nedim Lipka
Franck Dernoncourt
SyDa
91
0
0
15 Feb 2023
Improving Factual Consistency in Summarization with Compression-Based
  Post-Editing
Improving Factual Consistency in Summarization with Compression-Based Post-EditingConference on Empirical Methods in Natural Language Processing (EMNLP), 2022
Alexander R. Fabbri
Prafulla Kumar Choubey
Jesse Vig
Chien-Sheng Wu
Caiming Xiong
HILMKELM
243
21
0
11 Nov 2022
Correcting Diverse Factual Errors in Abstractive Summarization via
  Post-Editing and Language Model Infilling
Correcting Diverse Factual Errors in Abstractive Summarization via Post-Editing and Language Model InfillingConference on Empirical Methods in Natural Language Processing (EMNLP), 2022
Vidhisha Balachandran
Hannaneh Hajishirzi
William W. Cohen
Yulia Tsvetkov
HILMKELM
308
57
0
22 Oct 2022
Language Generation Models Can Cause Harm: So What Can We Do About It?
  An Actionable Survey
Language Generation Models Can Cause Harm: So What Can We Do About It? An Actionable SurveyConference of the European Chapter of the Association for Computational Linguistics (EACL), 2022
Sachin Kumar
Vidhisha Balachandran
Lucille Njoo
Antonios Anastasopoulos
Yulia Tsvetkov
ELM
448
105
0
14 Oct 2022
1