ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.10993
  4. Cited By
TerrainMesh: Metric-Semantic Terrain Reconstruction from Aerial Images
  Using Joint 2D-3D Learning

TerrainMesh: Metric-Semantic Terrain Reconstruction from Aerial Images Using Joint 2D-3D Learning

23 April 2022
Qiaojun Feng
Nikolay A. Atanasov
    3DV
ArXivPDFHTML

Papers citing "TerrainMesh: Metric-Semantic Terrain Reconstruction from Aerial Images Using Joint 2D-3D Learning"

5 / 5 papers shown
Title
Stronger Together: Air-Ground Robotic Collaboration Using Semantics
Stronger Together: Air-Ground Robotic Collaboration Using Semantics
Ian D. Miller
Fernando Cladera Ojeda
Trey Smith
Camillo J. Taylor
Vijay R. Kumar
41
37
0
28 Jun 2022
TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view
  Stereo
TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo
Lukas Koestler
Nan Yang
Niclas Zeller
Daniel Cremers
MDE
61
67
0
14 Nov 2021
Smooth Mesh Estimation from Depth Data using Non-Smooth Convex
  Optimization
Smooth Mesh Estimation from Depth Data using Non-Smooth Convex Optimization
Antoni Rosinol
Luca Carlone
13
3
0
06 Aug 2021
Mesh Reconstruction from Aerial Images for Outdoor Terrain Mapping Using
  Joint 2D-3D Learning
Mesh Reconstruction from Aerial Images for Outdoor Terrain Mapping Using Joint 2D-3D Learning
Qiaojun Feng
Nikolay A. Atanasov
3DV
8
4
0
06 Jan 2021
CodeVIO: Visual-Inertial Odometry with Learned Optimizable Dense Depth
CodeVIO: Visual-Inertial Odometry with Learned Optimizable Dense Depth
Xingxing Zuo
Nate Merrill
Wei Li
Yong-jin Liu
Marc Pollefeys
G. Huang
61
38
0
18 Dec 2020
1