ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.01307
  4. Cited By
Embedding Hallucination for Few-Shot Language Fine-tuning

Embedding Hallucination for Few-Shot Language Fine-tuning

3 May 2022
Yiren Jian
Chongyang Gao
Soroush Vosoughi
ArXivPDFHTML

Papers citing "Embedding Hallucination for Few-Shot Language Fine-tuning"

11 / 11 papers shown
Title
Predicting Rewards Alongside Tokens: Non-disruptive Parameter Insertion
  for Efficient Inference Intervention in Large Language Model
Predicting Rewards Alongside Tokens: Non-disruptive Parameter Insertion for Efficient Inference Intervention in Large Language Model
Chenhan Yuan
Fei Huang
Ru Peng
K. Lu
Bowen Yu
Chang Zhou
Jingren Zhou
KELM
37
0
0
20 Aug 2024
Lynx: An Open Source Hallucination Evaluation Model
Lynx: An Open Source Hallucination Evaluation Model
Selvan Sunitha Ravi
B. Mielczarek
Anand Kannappan
Douwe Kiela
Rebecca Qian
VLM
RALM
HILM
46
17
0
11 Jul 2024
MetaPix: Domain Transfer for Semantic Segmentation by Meta Pixel
  Weighting
MetaPix: Domain Transfer for Semantic Segmentation by Meta Pixel Weighting
Yiren Jian
Chongyang Gao
16
4
0
05 Oct 2021
Semi-Supervised Few-Shot Intent Classification and Slot Filling
Semi-Supervised Few-Shot Intent Classification and Slot Filling
S. Basu
Karine lp Kiun Chong
Amr Sharaf
Alex Fischer
Vishal Rohra
Michael Amoake
Hazem El-Hammamy
Ehimwenma Nosakhare
Vijay Ramani
Benjamin Han
VLM
10
6
0
17 Sep 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
280
3,843
0
18 Apr 2021
Making Pre-trained Language Models Better Few-shot Learners
Making Pre-trained Language Models Better Few-shot Learners
Tianyu Gao
Adam Fisch
Danqi Chen
241
1,916
0
31 Dec 2020
Improving Zero and Few-Shot Abstractive Summarization with Intermediate
  Fine-tuning and Data Augmentation
Improving Zero and Few-Shot Abstractive Summarization with Intermediate Fine-tuning and Data Augmentation
Alexander R. Fabbri
Simeng Han
Haoyuan Li
Haoran Li
Marjan Ghazvininejad
Shafiq R. Joty
Dragomir R. Radev
Yashar Mehdad
119
95
0
24 Oct 2020
Exploiting Cloze Questions for Few Shot Text Classification and Natural
  Language Inference
Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference
Timo Schick
Hinrich Schütze
258
1,586
0
21 Jan 2020
FreeLB: Enhanced Adversarial Training for Natural Language Understanding
FreeLB: Enhanced Adversarial Training for Natural Language Understanding
Chen Zhu
Yu Cheng
Zhe Gan
S. Sun
Tom Goldstein
Jingjing Liu
AAML
221
436
0
25 Sep 2019
Mixout: Effective Regularization to Finetune Large-scale Pretrained
  Language Models
Mixout: Effective Regularization to Finetune Large-scale Pretrained Language Models
Cheolhyoung Lee
Kyunghyun Cho
Wanmo Kang
MoE
235
205
0
25 Sep 2019
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language
  Understanding
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
294
6,943
0
20 Apr 2018
1