Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.02902
Cited By
Lagrangian PINNs: A causality-conforming solution to failure modes of physics-informed neural networks
5 May 2022
R. Mojgani
Maciej Balajewicz
P. Hassanzadeh
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Lagrangian PINNs: A causality-conforming solution to failure modes of physics-informed neural networks"
7 / 7 papers shown
Title
Integration Matters for Learning PDEs with Backwards SDEs
Sungje Park
Stephen Tu
PINN
55
0
0
02 May 2025
Fourier PINNs: From Strong Boundary Conditions to Adaptive Fourier Bases
Madison Cooley
Varun Shankar
Robert M. Kirby
Shandian Zhe
26
2
0
04 Oct 2024
SetPINNs: Set-based Physics-informed Neural Networks
M. Nagda
Phil Ostheimer
Thomas Specht
Frank Rhein
F. Jirasek
Stephan Mandt
Marius Kloft
Sophie Fellenz
3DPC
PINN
46
0
0
30 Sep 2024
Gradient Flow Based Phase-Field Modeling Using Separable Neural Networks
R. Mattey
Susanta Ghosh
AI4CE
43
1
0
09 May 2024
Macroscopic auxiliary asymptotic preserving neural networks for the linear radiative transfer equations
Hongyan Li
Song Jiang
Wenjun Sun
Liwei Xu
Guanyu Zhou
27
2
0
04 Mar 2024
Explaining the physics of transfer learning a data-driven subgrid-scale closure to a different turbulent flow
Adam Subel
Yifei Guan
A. Chattopadhyay
P. Hassanzadeh
AI4CE
29
41
0
07 Jun 2022
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
39
494
0
09 Feb 2021
1