ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.04766
  4. Cited By
Explainable Deep Learning Methods in Medical Image Classification: A
  Survey

Explainable Deep Learning Methods in Medical Image Classification: A Survey

10 May 2022
Cristiano Patrício
João C. Neves
Luís F. Teixeira
    XAI
ArXivPDFHTML

Papers citing "Explainable Deep Learning Methods in Medical Image Classification: A Survey"

15 / 15 papers shown
Title
Cross- and Intra-image Prototypical Learning for Multi-label Disease Diagnosis and Interpretation
Cross- and Intra-image Prototypical Learning for Multi-label Disease Diagnosis and Interpretation
Chong Wang
Fengbei Liu
Yuanhong Chen
Helen Frazer
Gustavo Carneiro
27
2
0
07 Nov 2024
InfoDisent: Explainability of Image Classification Models by Information Disentanglement
InfoDisent: Explainability of Image Classification Models by Information Disentanglement
Łukasz Struski
Dawid Rymarczyk
Jacek Tabor
46
0
0
16 Sep 2024
DiffExplainer: Unveiling Black Box Models Via Counterfactual Generation
DiffExplainer: Unveiling Black Box Models Via Counterfactual Generation
Yingying Fang
Shuang Wu
Zihao Jin
Caiwen Xu
Shiyi Wang
Simon Walsh
Guang Yang
MedIm
29
4
0
21 Jun 2024
A Systematic Literature Review on Explainability for Machine/Deep Learning-based Software Engineering Research
A Systematic Literature Review on Explainability for Machine/Deep Learning-based Software Engineering Research
Sicong Cao
Xiaobing Sun
Ratnadira Widyasari
David Lo
Xiaoxue Wu
...
Jiale Zhang
Bin Li
Wei Liu
Di Wu
Yixin Chen
24
6
0
26 Jan 2024
Medical Image Captioning via Generative Pretrained Transformers
Medical Image Captioning via Generative Pretrained Transformers
Alexander Selivanov
Oleg Y. Rogov
Daniil Chesakov
Artem Shelmanov
Irina Fedulova
Dmitry V. Dylov
MedIm
49
54
0
28 Sep 2022
Transformers in Medical Imaging: A Survey
Transformers in Medical Imaging: A Survey
Fahad Shamshad
Salman Khan
Syed Waqas Zamir
Muhammad Haris Khan
Munawar Hayat
F. Khan
H. Fu
ViT
LM&MA
MedIm
106
653
0
24 Jan 2022
ExAID: A Multimodal Explanation Framework for Computer-Aided Diagnosis
  of Skin Lesions
ExAID: A Multimodal Explanation Framework for Computer-Aided Diagnosis of Skin Lesions
Adriano Lucieri
Muhammad Naseer Bajwa
S. Braun
M. I. Malik
Andreas Dengel
Sheraz Ahmed
31
61
0
04 Jan 2022
Interpretable Mammographic Image Classification using Case-Based
  Reasoning and Deep Learning
Interpretable Mammographic Image Classification using Case-Based Reasoning and Deep Learning
A. Barnett
F. Schwartz
Chaofan Tao
Chaofan Chen
Yinhao Ren
J. Lo
Cynthia Rudin
62
21
0
12 Jul 2021
Evaluating Deep Neural Networks Trained on Clinical Images in
  Dermatology with the Fitzpatrick 17k Dataset
Evaluating Deep Neural Networks Trained on Clinical Images in Dermatology with the Fitzpatrick 17k Dataset
Matthew Groh
Caleb Harris
L. Soenksen
Felix Lau
Rachel Han
Aerin Kim
A. Koochek
Omar Badri
104
178
0
20 Apr 2021
Recent Advances in Adversarial Training for Adversarial Robustness
Recent Advances in Adversarial Training for Adversarial Robustness
Tao Bai
Jinqi Luo
Jun Zhao
B. Wen
Qian Wang
AAML
71
473
0
02 Feb 2021
Using StyleGAN for Visual Interpretability of Deep Learning Models on
  Medical Images
Using StyleGAN for Visual Interpretability of Deep Learning Models on Medical Images
K. Schutte
O. Moindrot
P. Hérent
Jean-Baptiste Schiratti
S. Jégou
FAtt
MedIm
29
60
0
19 Jan 2021
Explaining the Black-box Smoothly- A Counterfactual Approach
Explaining the Black-box Smoothly- A Counterfactual Approach
Junyu Chen
Yong Du
Yufan He
W. Paul Segars
Ye Li
MedIm
FAtt
63
83
0
11 Jan 2021
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
VarGrad: A Low-Variance Gradient Estimator for Variational Inference
Lorenz Richter
Ayman Boustati
Nikolas Nusken
Francisco J. R. Ruiz
Ömer Deniz Akyildiz
DRL
127
48
0
20 Oct 2020
A Survey on Deep Learning in Medical Image Analysis
A Survey on Deep Learning in Medical Image Analysis
G. Litjens
Thijs Kooi
B. Bejnordi
A. Setio
F. Ciompi
Mohsen Ghafoorian
Jeroen van der Laak
Bram van Ginneken
C. I. Sánchez
OOD
278
10,599
0
19 Feb 2017
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
247
9,042
0
06 Jun 2015
1