ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.06664
  4. Cited By
NN-EUCLID: deep-learning hyperelasticity without stress data

NN-EUCLID: deep-learning hyperelasticity without stress data

4 May 2022
Prakash Thakolkaran
Akshay Joshi
Yiwen Zheng
Moritz Flaschel
L. Lorenzis
Siddhant Kumar
ArXivPDFHTML

Papers citing "NN-EUCLID: deep-learning hyperelasticity without stress data"

18 / 18 papers shown
Title
Input convex neural networks: universal approximation theorem and implementation for isotropic polyconvex hyperelastic energies
Input convex neural networks: universal approximation theorem and implementation for isotropic polyconvex hyperelastic energies
Gian-Luca Geuken
P. Kurzeja
David Wiedemann
J. Mosler
43
1
0
12 Feb 2025
Learning Physics-Consistent Material Behavior from Dynamic Displacements
Learning Physics-Consistent Material Behavior from Dynamic Displacements
Zhichao Han
Mohit Pundir
Olga Fink
David S. Kammer
PINN
AI4CE
30
0
0
25 Jul 2024
A review on data-driven constitutive laws for solids
A review on data-driven constitutive laws for solids
J. Fuhg
G. A. Padmanabha
N. Bouklas
B. Bahmani
WaiChing Sun
Nikolaos N. Vlassis
Moritz Flaschel
P. Carrara
L. Lorenzis
AI4CE
AILaw
21
31
0
06 May 2024
Hybrid data-driven and physics-informed regularized learning of cyclic
  plasticity with Neural Networks
Hybrid data-driven and physics-informed regularized learning of cyclic plasticity with Neural Networks
Stefan Hildebrand
Sandra Klinge
26
0
0
04 Mar 2024
Discussing the Spectrum of Physics-Enhanced Machine Learning; a Survey
  on Structural Mechanics Applications
Discussing the Spectrum of Physics-Enhanced Machine Learning; a Survey on Structural Mechanics Applications
M. Haywood-Alexander
Wei Liu
Kiran Bacsa
Zhilu Lai
Eleni Chatzi
AI4CE
13
9
0
31 Oct 2023
Deep Learning in Deterministic Computational Mechanics
Deep Learning in Deterministic Computational Mechanics
L. Herrmann
Stefan Kollmannsberger
AI4CE
PINN
35
0
0
27 Sep 2023
Generative Hyperelasticity with Physics-Informed Probabilistic Diffusion
  Fields
Generative Hyperelasticity with Physics-Informed Probabilistic Diffusion Fields
Vahidullah Tac
Manuel K Rausch
Ilias Bilionis
F. Sahli Costabal
A. B. Tepole
DiffM
AI4CE
19
3
0
11 Sep 2023
Stress representations for tensor basis neural networks: alternative
  formulations to Finger-Rivlin-Ericksen
Stress representations for tensor basis neural networks: alternative formulations to Finger-Rivlin-Ericksen
J. Fuhg
N. Bouklas
Reese E. Jones
11
10
0
21 Aug 2023
Predicting and explaining nonlinear material response using deep
  Physically Guided Neural Networks with Internal Variables
Predicting and explaining nonlinear material response using deep Physically Guided Neural Networks with Internal Variables
Javier Orera-Echeverria
J. Ayensa-Jiménez
Manuel Doblaré
18
1
0
07 Aug 2023
A Generative Modeling Framework for Inferring Families of Biomechanical
  Constitutive Laws in Data-Sparse Regimes
A Generative Modeling Framework for Inferring Families of Biomechanical Constitutive Laws in Data-Sparse Regimes
Minglang Yin
Zongren Zou
Enrui Zhang
C. Cavinato
J. Humphrey
George Karniadakis
SyDa
MedIm
AI4CE
42
11
0
04 May 2023
Data-driven anisotropic finite viscoelasticity using neural ordinary
  differential equations
Data-driven anisotropic finite viscoelasticity using neural ordinary differential equations
Vahidullah Tac
Manuel K Rausch
F. Sahli Costabal
A. B. Tepole
18
33
0
11 Jan 2023
Cooperative data-driven modeling
Cooperative data-driven modeling
Aleksandr Dekhovich
O. T. Turan
Jiaxiang Yi
Miguel A. Bessa
CLL
KELM
AI4CE
10
5
0
23 Nov 2022
MAgNET: A Graph U-Net Architecture for Mesh-Based Simulations
MAgNET: A Graph U-Net Architecture for Mesh-Based Simulations
Saurabh Deshpande
Stéphane P. A. Bordas
J. Lengiewicz
AI4CE
GNN
79
27
0
01 Nov 2022
Spiking neural networks for nonlinear regression
Spiking neural networks for nonlinear regression
Alexander Henkes
Jason Eshraghian
Henning Wessels
29
26
0
06 Oct 2022
A new family of Constitutive Artificial Neural Networks towards
  automated model discovery
A new family of Constitutive Artificial Neural Networks towards automated model discovery
K. Linka
E. Kuhl
AI4CE
14
156
0
15 Sep 2022
Thermodynamics of learning physical phenomena
Thermodynamics of learning physical phenomena
Elías Cueto
Francisco Chinesta
AI4CE
16
22
0
26 Jul 2022
Calibrating constitutive models with full-field data via physics
  informed neural networks
Calibrating constitutive models with full-field data via physics informed neural networks
Craig M. Hamel
K. Long
S. Kramer
AI4CE
25
28
0
30 Mar 2022
Input Convex Neural Networks
Input Convex Neural Networks
Brandon Amos
Lei Xu
J. Zico Kolter
173
596
0
22 Sep 2016
1