ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.07704
  4. Cited By
From Dirichlet to Rubin: Optimistic Exploration in RL without Bonuses

From Dirichlet to Rubin: Optimistic Exploration in RL without Bonuses

16 May 2022
D. Tiapkin
Denis Belomestny
Eric Moulines
A. Naumov
S. Samsonov
Yunhao Tang
Michal Valko
Pierre Menard
ArXivPDFHTML

Papers citing "From Dirichlet to Rubin: Optimistic Exploration in RL without Bonuses"

10 / 10 papers shown
Title
Smart Exploration in Reinforcement Learning using Bounded Uncertainty Models
Smart Exploration in Reinforcement Learning using Bounded Uncertainty Models
J.S. van Hulst
W.P.M.H. Heemels
D.J. Antunes
OffRL
16
0
0
08 Apr 2025
Provably and Practically Efficient Adversarial Imitation Learning with
  General Function Approximation
Provably and Practically Efficient Adversarial Imitation Learning with General Function Approximation
Tian Xu
Zhilong Zhang
Ruishuo Chen
Yihao Sun
Yang Yu
30
1
0
01 Nov 2024
Q-Star Meets Scalable Posterior Sampling: Bridging Theory and Practice
  via HyperAgent
Q-Star Meets Scalable Posterior Sampling: Bridging Theory and Practice via HyperAgent
Yingru Li
Jiawei Xu
Lei Han
Zhi-Quan Luo
BDL
OffRL
26
6
0
05 Feb 2024
Model-Based Epistemic Variance of Values for Risk-Aware Policy
  Optimization
Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization
Carlos E. Luis
A. Bottero
Julia Vinogradska
Felix Berkenkamp
Jan Peters
OffRL
31
3
0
07 Dec 2023
Provable and Practical: Efficient Exploration in Reinforcement Learning
  via Langevin Monte Carlo
Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo
Haque Ishfaq
Qingfeng Lan
Pan Xu
A. R. Mahmood
Doina Precup
Anima Anandkumar
Kamyar Azizzadenesheli
BDL
OffRL
26
20
0
29 May 2023
Posterior Sampling for Deep Reinforcement Learning
Posterior Sampling for Deep Reinforcement Learning
Remo Sasso
Michelangelo Conserva
Paulo E. Rauber
OffRL
BDL
35
6
0
30 Apr 2023
Sharp Deviations Bounds for Dirichlet Weighted Sums with Application to
  analysis of Bayesian algorithms
Sharp Deviations Bounds for Dirichlet Weighted Sums with Application to analysis of Bayesian algorithms
Denis Belomestny
Pierre Menard
A. Naumov
D. Tiapkin
Michal Valko
22
2
0
06 Apr 2023
A General Recipe for the Analysis of Randomized Multi-Armed Bandit
  Algorithms
A General Recipe for the Analysis of Randomized Multi-Armed Bandit Algorithms
Dorian Baudry
Kazuya Suzuki
Junya Honda
29
4
0
10 Mar 2023
Optimistic Posterior Sampling for Reinforcement Learning with Few
  Samples and Tight Guarantees
Optimistic Posterior Sampling for Reinforcement Learning with Few Samples and Tight Guarantees
D. Tiapkin
Denis Belomestny
Daniele Calandriello
Eric Moulines
Rémi Munos
A. Naumov
Mark Rowland
Michal Valko
Pierre Menard
36
8
0
28 Sep 2022
UCB Momentum Q-learning: Correcting the bias without forgetting
UCB Momentum Q-learning: Correcting the bias without forgetting
Pierre Menard
O. D. Domingues
Xuedong Shang
Michal Valko
79
40
0
01 Mar 2021
1