Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.08304
Cited By
Bayesian Physics-Informed Neural Networks for real-world nonlinear dynamical systems
12 May 2022
K. Linka
Amelie Schäfer
Xuhui Meng
Zongren Zou
George Karniadakis
E. Kuhl
OOD
PINN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Bayesian Physics-Informed Neural Networks for real-world nonlinear dynamical systems"
37 / 37 papers shown
Title
Improved Uncertainty Quantification in Physics-Informed Neural Networks Using Error Bounds and Solution Bundles
P. Flores
Olga Graf
P. Protopapas
K. Pichara
PINN
28
0
0
09 May 2025
Reliable and Efficient Inverse Analysis using Physics-Informed Neural Networks with Distance Functions and Adaptive Weight Tuning
Shota Deguchi
Mitsuteru Asai
PINN
AI4CE
76
0
0
25 Apr 2025
Physics-informed KAN PointNet: Deep learning for simultaneous solutions to inverse problems in incompressible flow on numerous irregular geometries
Ali Kashefi
T. Mukerji
3DPC
PINN
47
0
0
08 Apr 2025
Online Traffic Density Estimation using Physics-Informed Neural Networks
Dennis Wilkman
Kateryna Morozovska
Karl H. Johansson
Matthieu Barreau
31
0
0
04 Apr 2025
Learning and discovering multiple solutions using physics-informed neural networks with random initialization and deep ensemble
Zongren Zou
Zhicheng Wang
George Karniadakis
PINN
AI4CE
65
2
0
08 Mar 2025
MILP initialization for solving parabolic PDEs with PINNs
Sirui Li
Federica Bragone
Matthieu Barreau
Kateryna Morozovska
33
0
0
28 Jan 2025
Physics-informed deep learning for infectious disease forecasting
Y. Qian
Éric Marty
Avranil Basu
Avranil Basu
Eamon B. O'Dea
Xianqiao Wang
Spencer Fox
Pejman Rohani
John M. Drake
He Li
PINN
AI4CE
78
2
0
16 Jan 2025
Empowering Bayesian Neural Networks with Functional Priors through Anchored Ensembling for Mechanics Surrogate Modeling Applications
Javad Ghorbanian
Nicholas Casaprima
Audrey Olivier
28
0
0
08 Sep 2024
HyperSBINN: A Hypernetwork-Enhanced Systems Biology-Informed Neural Network for Efficient Drug Cardiosafety Assessment
Inass Soukarieh
Gerhard Hessler
Hervé Minoux
Marcel Mohr
Friedemann Schmidt
Jan Wenzel
Pierre Barbillon
Hugo Gangloff
Pierre Gloaguen
24
0
0
26 Aug 2024
Quantification of total uncertainty in the physics-informed reconstruction of CVSim-6 physiology
Mario De Florio
Zongren Zou
Daniele E. Schiavazzi
George Karniadakis
26
3
0
13 Aug 2024
NeuroSEM: A hybrid framework for simulating multiphysics problems by coupling PINNs and spectral elements
K. Shukla
Zongren Zou
Chi Hin Chan
Additi Pandey
Zhicheng Wang
George Karniadakis
PINN
42
7
0
30 Jul 2024
Accounting for plasticity: An extension of inelastic Constitutive Artificial Neural Networks
Birte Boes
Jaan-Willem Simon
H. Holthusen
AI4CE
32
6
0
27 Jul 2024
Randomized Physics-Informed Neural Networks for Bayesian Data Assimilation
Yifei Zong
D. Barajas-Solano
A. Tartakovsky
36
1
0
05 Jul 2024
WANCO: Weak Adversarial Networks for Constrained Optimization problems
Gang Bao
Dong Wang
Boyi Zou
39
1
0
04 Jul 2024
Initialization-enhanced Physics-Informed Neural Network with Domain Decomposition (IDPINN)
Chenhao Si
Ming Yan
AI4CE
PINN
33
3
0
05 Jun 2024
A comprehensive and FAIR comparison between MLP and KAN representations for differential equations and operator networks
K. Shukla
Juan Diego Toscano
Zhicheng Wang
Zongren Zou
George Karniadakis
24
73
0
05 Jun 2024
Integrating GNN and Neural ODEs for Estimating Two-Body Interactions in Mixed-Species Collective Motion
Masahito Uwamichi
S. Schnyder
Tetsuya J. Kobayashi
Satoshi Sawai
15
0
0
26 May 2024
Large scale scattering using fast solvers based on neural operators
Zongren Zou
Adar Kahana
Enrui Zhang
Eli Turkel
Rishikesh Ranade
Jay Pathak
George Karniadakis
34
1
0
20 May 2024
Variational Bayesian surrogate modelling with application to robust design optimisation
Thomas A. Archbold
Ieva Kazlauskaite
F. Cirak
20
1
0
23 Apr 2024
Leveraging viscous Hamilton-Jacobi PDEs for uncertainty quantification in scientific machine learning
Zongren Zou
Tingwei Meng
Paula Chen
Jérome Darbon
George Karniadakis
36
7
0
12 Apr 2024
A Framework for Strategic Discovery of Credible Neural Network Surrogate Models under Uncertainty
Pratyush Kumar Singh
Kathryn A. Farrell-Maupin
D. Faghihi
32
6
0
13 Mar 2024
Bayesian identification of nonseparable Hamiltonians with multiplicative noise using deep learning and reduced-order modeling
Nicholas Galioto
Harsh Sharma
Boris Kramer
Alex Arkady Gorodetsky
31
0
0
23 Jan 2024
Uncertainty quantification for noisy inputs-outputs in physics-informed neural networks and neural operators
Zongren Zou
Xuhui Meng
George Karniadakis
AI4CE
25
19
0
19 Nov 2023
Correcting model misspecification in physics-informed neural networks (PINNs)
Zongren Zou
Xuhui Meng
George Karniadakis
PINN
24
41
0
16 Oct 2023
A physics and data co-driven surrogate modeling method for high-dimensional rare event simulation
Jianhua Xian
Ziqi Wang
AI4CE
20
9
0
30 Sep 2023
Auto-weighted Bayesian Physics-Informed Neural Networks and robust estimations for multitask inverse problems in pore-scale imaging of dissolution
S. Pérez
P. Poncet
25
3
0
24 Aug 2023
Discovering a reaction-diffusion model for Alzheimer's disease by combining PINNs with symbolic regression
Zhen Zhang
Zongren Zou
E. Kuhl
George Karniadakis
21
41
0
16 Jul 2023
LatentPINNs: Generative physics-informed neural networks via a latent representation learning
M. H. Taufik
T. Alkhalifah
AI4CE
DiffM
41
4
0
11 May 2023
A Generative Modeling Framework for Inferring Families of Biomechanical Constitutive Laws in Data-Sparse Regimes
Minglang Yin
Zongren Zou
Enrui Zhang
C. Cavinato
J. Humphrey
George Karniadakis
SyDa
MedIm
AI4CE
45
11
0
04 May 2023
Physics-informed radial basis network (PIRBN): A local approximating neural network for solving nonlinear PDEs
Jinshuai Bai
Guirong Liu
Ashish Gupta
Laith Alzubaidi
Xinzhu Feng
Yuantong T. Gu
PINN
16
1
0
13 Apr 2023
Physics-informed PointNet: On how many irregular geometries can it solve an inverse problem simultaneously? Application to linear elasticity
Ali Kashefi
Leonidas J. Guibas
T. Mukerji
PINN
3DPC
AI4CE
24
9
0
22 Mar 2023
Approaching epidemiological dynamics of COVID-19 with physics-informed neural networks
Shuai Han
Lukas Stelz
Horst Stoecker
L. Wang
Kai Zhou
AI4CE
PINN
16
9
0
17 Feb 2023
L-HYDRA: Multi-Head Physics-Informed Neural Networks
Zongren Zou
George Karniadakis
AI4CE
16
26
0
05 Jan 2023
Utilising physics-guided deep learning to overcome data scarcity
Jinshuai Bai
Laith Alzubaidi
Qingxia Wang
E. Kuhl
Bennamoun
Yuantong T. Gu
PINN
AI4CE
22
3
0
24 Nov 2022
A new family of Constitutive Artificial Neural Networks towards automated model discovery
K. Linka
E. Kuhl
AI4CE
23
156
0
15 Sep 2022
MRF-PINN: A Multi-Receptive-Field convolutional physics-informed neural network for solving partial differential equations
Shihong Zhang
Chi Zhang
Bo Wang
AI4CE
13
3
0
06 Sep 2022
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
170
756
0
13 Mar 2020
1