Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.08332
Cited By
Scalable algorithms for physics-informed neural and graph networks
16 May 2022
K. Shukla
Mengjia Xu
N. Trask
George Karniadakis
PINN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Scalable algorithms for physics-informed neural and graph networks"
22 / 22 papers shown
Title
Stratospheric aerosol source inversion: Noise, variability, and uncertainty quantification
J. Hart
I. Manickam
M. Gulian
L. Swiler
D. Bull
T. Ehrmann
H. Brown
B. Wagman
J. Watkins
21
2
0
10 Sep 2024
Physics-informed graph neural networks for flow field estimation in carotid arteries
Julian Suk
Dieuwertje Alblas
B A Hutten
A. Wiegman
Christoph Brune
P. Ooij
J. Wolterink
AI4CE
24
2
0
13 Aug 2024
Graph Neural Networks and Applied Linear Algebra
Nicholas S. Moore
Eric C. Cyr
Peter Ohm
C. Siefert
R. Tuminaro
9
4
0
21 Oct 2023
Deep Learning-based surrogate models for parametrized PDEs: handling geometric variability through graph neural networks
N. R. Franco
S. Fresca
Filippo Tombari
Andrea Manzoni
AI4CE
16
16
0
03 Aug 2023
Physics-informed neural networks modeling for systems with moving immersed boundaries: application to an unsteady flow past a plunging foil
Rahul Sundar
Dipanjan Majumdar
Didier Lucor
Sunetra Sarkar
PINN
AI4CE
18
6
0
23 Jun 2023
Learning CO
2
_2
2
plume migration in faulted reservoirs with Graph Neural Networks
X. Ju
Franccois P. Hamon
Gege Wen
Rayan Kanfar
Mauricio Araya-Polo
H. Tchelepi
AI4CE
8
1
0
16 Jun 2023
Reversible and irreversible bracket-based dynamics for deep graph neural networks
A. Gruber
Kookjin Lee
N. Trask
AI4CE
9
9
0
24 May 2023
Importance of equivariant and invariant symmetries for fluid flow modeling
Varun Shankar
Shivam Barwey
Zico Kolter
R. Maulik
V. Viswanathan
AI4CE
22
4
0
03 May 2023
Solving High-Dimensional Inverse Problems with Auxiliary Uncertainty via Operator Learning with Limited Data
Joseph L. Hart
Mamikon A. Gulian
Indu Manickam
L. Swiler
6
8
0
20 Mar 2023
h-analysis and data-parallel physics-informed neural networks
Paul Escapil-Inchauspé
G. A. Ruz
PINN
AI4CE
15
2
0
17 Feb 2023
SE(3) symmetry lets graph neural networks learn arterial velocity estimation from small datasets
Julian Suk
Christoph Brune
J. Wolterink
22
10
0
17 Feb 2023
Mesh Neural Networks for SE(3)-Equivariant Hemodynamics Estimation on the Artery Wall
Julian Suk
P. D. Haan
Phillip Lippe
Christoph Brune
J. Wolterink
10
20
0
09 Dec 2022
Multimodal learning with graphs
Yasha Ektefaie
George Dasoulas
Ayush Noori
Maha Farhat
Marinka Zitnik
35
82
0
07 Sep 2022
Physics-Informed Deep Neural Operator Networks
S. Goswami
Aniruddha Bora
Yue Yu
George Karniadakis
PINN
AI4CE
18
96
0
08 Jul 2022
DynG2G: An Efficient Stochastic Graph Embedding Method for Temporal Graphs
Mengjia Xu
Apoorva Vikram Singh
George Karniadakis
AI4CE
42
6
0
28 Sep 2021
Parallel Physics-Informed Neural Networks via Domain Decomposition
K. Shukla
Ameya Dilip Jagtap
George Karniadakis
PINN
90
271
0
20 Apr 2021
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
39
365
0
09 Feb 2021
NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simulation framework
O. Hennigh
S. Narasimhan
M. A. Nabian
Akshay Subramaniam
Kaustubh Tangsali
M. Rietmann
J. Ferrandis
Wonmin Byeon
Z. Fang
S. Choudhry
PINN
AI4CE
85
112
0
14 Dec 2020
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition
E. Kharazmi
Zhongqiang Zhang
George Karniadakis
104
503
0
11 Mar 2020
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,801
0
25 Nov 2016
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
273
2,696
0
15 Sep 2016
Statistical topological data analysis using persistence landscapes
Peter Bubenik
94
842
0
27 Jul 2012
1