ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.08332
  4. Cited By
Scalable algorithms for physics-informed neural and graph networks

Scalable algorithms for physics-informed neural and graph networks

16 May 2022
K. Shukla
Mengjia Xu
N. Trask
George Karniadakis
    PINN
    AI4CE
ArXivPDFHTML

Papers citing "Scalable algorithms for physics-informed neural and graph networks"

22 / 22 papers shown
Title
Stratospheric aerosol source inversion: Noise, variability, and
  uncertainty quantification
Stratospheric aerosol source inversion: Noise, variability, and uncertainty quantification
J. Hart
I. Manickam
M. Gulian
L. Swiler
D. Bull
T. Ehrmann
H. Brown
B. Wagman
J. Watkins
21
2
0
10 Sep 2024
Physics-informed graph neural networks for flow field estimation in
  carotid arteries
Physics-informed graph neural networks for flow field estimation in carotid arteries
Julian Suk
Dieuwertje Alblas
B A Hutten
A. Wiegman
Christoph Brune
P. Ooij
J. Wolterink
AI4CE
24
2
0
13 Aug 2024
Graph Neural Networks and Applied Linear Algebra
Graph Neural Networks and Applied Linear Algebra
Nicholas S. Moore
Eric C. Cyr
Peter Ohm
C. Siefert
R. Tuminaro
9
4
0
21 Oct 2023
Deep Learning-based surrogate models for parametrized PDEs: handling
  geometric variability through graph neural networks
Deep Learning-based surrogate models for parametrized PDEs: handling geometric variability through graph neural networks
N. R. Franco
S. Fresca
Filippo Tombari
Andrea Manzoni
AI4CE
16
16
0
03 Aug 2023
Physics-informed neural networks modeling for systems with moving
  immersed boundaries: application to an unsteady flow past a plunging foil
Physics-informed neural networks modeling for systems with moving immersed boundaries: application to an unsteady flow past a plunging foil
Rahul Sundar
Dipanjan Majumdar
Didier Lucor
Sunetra Sarkar
PINN
AI4CE
18
6
0
23 Jun 2023
Learning CO$_2$ plume migration in faulted reservoirs with Graph Neural
  Networks
Learning CO2_22​ plume migration in faulted reservoirs with Graph Neural Networks
X. Ju
Franccois P. Hamon
Gege Wen
Rayan Kanfar
Mauricio Araya-Polo
H. Tchelepi
AI4CE
8
1
0
16 Jun 2023
Reversible and irreversible bracket-based dynamics for deep graph neural
  networks
Reversible and irreversible bracket-based dynamics for deep graph neural networks
A. Gruber
Kookjin Lee
N. Trask
AI4CE
9
9
0
24 May 2023
Importance of equivariant and invariant symmetries for fluid flow
  modeling
Importance of equivariant and invariant symmetries for fluid flow modeling
Varun Shankar
Shivam Barwey
Zico Kolter
R. Maulik
V. Viswanathan
AI4CE
22
4
0
03 May 2023
Solving High-Dimensional Inverse Problems with Auxiliary Uncertainty via
  Operator Learning with Limited Data
Solving High-Dimensional Inverse Problems with Auxiliary Uncertainty via Operator Learning with Limited Data
Joseph L. Hart
Mamikon A. Gulian
Indu Manickam
L. Swiler
6
8
0
20 Mar 2023
h-analysis and data-parallel physics-informed neural networks
h-analysis and data-parallel physics-informed neural networks
Paul Escapil-Inchauspé
G. A. Ruz
PINN
AI4CE
15
2
0
17 Feb 2023
SE(3) symmetry lets graph neural networks learn arterial velocity
  estimation from small datasets
SE(3) symmetry lets graph neural networks learn arterial velocity estimation from small datasets
Julian Suk
Christoph Brune
J. Wolterink
22
10
0
17 Feb 2023
Mesh Neural Networks for SE(3)-Equivariant Hemodynamics Estimation on
  the Artery Wall
Mesh Neural Networks for SE(3)-Equivariant Hemodynamics Estimation on the Artery Wall
Julian Suk
P. D. Haan
Phillip Lippe
Christoph Brune
J. Wolterink
10
20
0
09 Dec 2022
Multimodal learning with graphs
Multimodal learning with graphs
Yasha Ektefaie
George Dasoulas
Ayush Noori
Maha Farhat
Marinka Zitnik
35
82
0
07 Sep 2022
Physics-Informed Deep Neural Operator Networks
Physics-Informed Deep Neural Operator Networks
S. Goswami
Aniruddha Bora
Yue Yu
George Karniadakis
PINN
AI4CE
18
96
0
08 Jul 2022
DynG2G: An Efficient Stochastic Graph Embedding Method for Temporal
  Graphs
DynG2G: An Efficient Stochastic Graph Embedding Method for Temporal Graphs
Mengjia Xu
Apoorva Vikram Singh
George Karniadakis
AI4CE
42
6
0
28 Sep 2021
Parallel Physics-Informed Neural Networks via Domain Decomposition
Parallel Physics-Informed Neural Networks via Domain Decomposition
K. Shukla
Ameya Dilip Jagtap
George Karniadakis
PINN
90
271
0
20 Apr 2021
Physics-informed neural networks with hard constraints for inverse
  design
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
39
365
0
09 Feb 2021
NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simulation framework
NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simulation framework
O. Hennigh
S. Narasimhan
M. A. Nabian
Akshay Subramaniam
Kaustubh Tangsali
M. Rietmann
J. Ferrandis
Wonmin Byeon
Z. Fang
S. Choudhry
PINN
AI4CE
85
112
0
14 Dec 2020
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain
  Decomposition
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition
E. Kharazmi
Zhongqiang Zhang
George Karniadakis
104
503
0
11 Mar 2020
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,801
0
25 Nov 2016
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
  Minima
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
273
2,696
0
15 Sep 2016
Statistical topological data analysis using persistence landscapes
Statistical topological data analysis using persistence landscapes
Peter Bubenik
94
842
0
27 Jul 2012
1