ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.09722
  4. Cited By
Light In The Black: An Evaluation of Data Augmentation Techniques for
  COVID-19 CT's Semantic Segmentation

Light In The Black: An Evaluation of Data Augmentation Techniques for COVID-19 CT's Semantic Segmentation

19 May 2022
Bruno A. Krinski
Daniel V. Ruiz
E. Todt
    3DPC
ArXivPDFHTML

Papers citing "Light In The Black: An Evaluation of Data Augmentation Techniques for COVID-19 CT's Semantic Segmentation"

2 / 2 papers shown
Title
Spark in the Dark: Evaluating Encoder-Decoder Pairs for COVID-19 CT's
  Semantic Segmentation
Spark in the Dark: Evaluating Encoder-Decoder Pairs for COVID-19 CT's Semantic Segmentation
Bruno A. Krinski
Daniel V. Ruiz
E. Todt
11
4
0
30 Sep 2021
GASNet: Weakly-supervised Framework for COVID-19 Lesion Segmentation
GASNet: Weakly-supervised Framework for COVID-19 Lesion Segmentation
Zhanwei Xu
Yukun Cao
Cheng Jin
Guozhu Shao
Xiaoqing Liu
Jie Zhou
Heshui Shi
Jianjiang Feng
MedIm
17
25
0
19 Oct 2020
1