ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.11506
  4. Cited By
Orchestra: Unsupervised Federated Learning via Globally Consistent
  Clustering

Orchestra: Unsupervised Federated Learning via Globally Consistent Clustering

23 May 2022
Ekdeep Singh Lubana
Chi Ian Tang
F. Kawsar
Robert P. Dick
Akhil Mathur
    FedML
ArXivPDFHTML

Papers citing "Orchestra: Unsupervised Federated Learning via Globally Consistent Clustering"

13 / 13 papers shown
Title
Federated Deep Subspace Clustering
Federated Deep Subspace Clustering
Yupei Zhang
Ruojia Feng
Yifei Wang
Xuequn Shang
FedML
80
0
0
17 Jan 2025
A Survey on Federated Analytics: Taxonomy, Enabling Techniques, Applications and Open Issues
A Survey on Federated Analytics: Taxonomy, Enabling Techniques, Applications and Open Issues
Zibo Wang
Haichao Ji
Yifei Zhu
Dan Wang
Zhu Han
51
1
0
19 Apr 2024
Harnessing the Power of Federated Learning in Federated Contextual
  Bandits
Harnessing the Power of Federated Learning in Federated Contextual Bandits
Chengshuai Shi
Ruida Zhou
Kun Yang
Cong Shen
FedML
21
0
0
26 Dec 2023
A Survey for Federated Learning Evaluations: Goals and Measures
A Survey for Federated Learning Evaluations: Goals and Measures
Di Chai
Leye Wang
Liu Yang
Junxue Zhang
Kai Chen
Qian Yang
ELM
FedML
17
21
0
23 Aug 2023
Heterogeneous Federated Learning: State-of-the-art and Research
  Challenges
Heterogeneous Federated Learning: State-of-the-art and Research Challenges
Mang Ye
Xiuwen Fang
Bo Du
PongChi Yuen
Dacheng Tao
FedML
AAML
36
244
0
20 Jul 2023
FedIL: Federated Incremental Learning from Decentralized Unlabeled Data
  with Convergence Analysis
FedIL: Federated Incremental Learning from Decentralized Unlabeled Data with Convergence Analysis
Nan Yang
Dong Yuan
Charles Z. Liu
Yong Deng
Wei Bao
FedML
58
5
0
23 Feb 2023
The Future of Consumer Edge-AI Computing
The Future of Consumer Edge-AI Computing
Stefanos Laskaridis
Stylianos I. Venieris
Alexandros Kouris
Rui Li
Nicholas D. Lane
39
8
0
19 Oct 2022
Analyzing Data-Centric Properties for Graph Contrastive Learning
Analyzing Data-Centric Properties for Graph Contrastive Learning
Puja Trivedi
Ekdeep Singh Lubana
Mark Heimann
Danai Koutra
Jayaraman J. Thiagarajan
26
11
0
04 Aug 2022
FLAME: Federated Learning Across Multi-device Environments
FLAME: Federated Learning Across Multi-device Environments
Hyunsung Cho
Akhil Mathur
F. Kawsar
11
21
0
17 Feb 2022
SSFL: Tackling Label Deficiency in Federated Learning via Personalized
  Self-Supervision
SSFL: Tackling Label Deficiency in Federated Learning via Personalized Self-Supervision
Chaoyang He
Zhengyu Yang
Erum Mushtaq
Sunwoo Lee
Mahdi Soltanolkotabi
A. Avestimehr
FedML
95
36
0
06 Oct 2021
Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
314
5,775
0
29 Apr 2021
Emerging Trends in Federated Learning: From Model Fusion to Federated X
  Learning
Emerging Trends in Federated Learning: From Model Fusion to Federated X Learning
Shaoxiong Ji
Yue Tan
Teemu Saravirta
Zhiqin Yang
Yixin Liu
Lauri Vasankari
Shirui Pan
Guodong Long
A. Walid
FedML
34
76
0
25 Feb 2021
Understanding self-supervised Learning Dynamics without Contrastive
  Pairs
Understanding self-supervised Learning Dynamics without Contrastive Pairs
Yuandong Tian
Xinlei Chen
Surya Ganguli
SSL
138
279
0
12 Feb 2021
1