Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.12934
Cited By
Amortized Inference for Causal Structure Learning
25 May 2022
Lars Lorch
Scott Sussex
Jonas Rothfuss
Andreas Krause
Bernhard Schölkopf
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Amortized Inference for Causal Structure Learning"
46 / 46 papers shown
Title
Identifying Causal Direction via Variational Bayesian Compression
Quang-Duy Tran
Bao Duong
Phuoc Nguyen
Thin Nguyen
CML
26
0
0
12 May 2025
ACTIVA: Amortized Causal Effect Estimation without Graphs via Transformer-based Variational Autoencoder
Andreas Sauter
Saber Salehkaleybar
Aske Plaat
Erman Acar
CML
43
0
0
03 Mar 2025
Amortized Conditional Independence Testing
Bao Duong
Nu Hoang
T. Nguyen
CML
45
0
0
28 Feb 2025
Learning Identifiable Structures Helps Avoid Bias in DNN-based Supervised Causal Learning
Jiaru Zhang
Rui Ding
Qiang Fu
Bojun Huang
Zizhen Deng
Yang Hua
Haibing Guan
Shi Han
Dongmei Zhang
CML
48
0
0
15 Feb 2025
Amortized In-Context Bayesian Posterior Estimation
Sarthak Mittal
Niels Leif Bracher
Guillaume Lajoie
P. Jaini
Marcus A. Brubaker
54
1
0
10 Feb 2025
Sample Efficient Bayesian Learning of Causal Graphs from Interventions
Zihan Zhou
Muhammad Qasim Elahi
Murat Kocaoglu
CML
26
0
0
26 Oct 2024
Efficient Differentiable Discovery of Causal Order
Mathieu Chevalley
Arash Mehrjou
Patrick Schwab
40
0
0
11 Oct 2024
Zero-Shot Learning of Causal Models
Divyat Mahajan
Jannes Gladrow
Agrin Hilmkil
Cheng Zhang
M. Scetbon
36
1
0
08 Oct 2024
GAMformer: In-Context Learning for Generalized Additive Models
Andreas Mueller
Julien N. Siems
Harsha Nori
David Salinas
Arber Zela
Rich Caruana
Frank Hutter
AI4CE
31
3
0
06 Oct 2024
Possible principles for aligned structure learning agents
Lancelot Da Costa
Tomáš Gavenčiak
David Hyland
Mandana Samiei
Cristian Dragos-Manta
Candice Pattisapu
Adeel Razi
Karl J. Friston
20
1
0
30 Sep 2024
Interventional Causal Structure Discovery over Graphical Models with Convergence and Optimality Guarantees
Qiu Chengbo
Yang Kai
CML
35
0
0
09 Aug 2024
MiranDa: Mimicking the Learning Processes of Human Doctors to Achieve Causal Inference for Medication Recommendation
Ziheng Wang
Xinhe Li
H. Momma
Stefan Köpsell
CML
26
0
0
23 Jul 2024
Enabling Causal Discovery in Post-Nonlinear Models with Normalizing Flows
Nu Hoang
Bao Duong
Thin Nguyen
22
0
0
06 Jul 2024
Disentangled Representations for Causal Cognition
Filippo Torresan
Manuel Baltieri
CML
29
1
0
30 Jun 2024
Standardizing Structural Causal Models
Weronika Ormaniec
Scott Sussex
Lars Lorch
Bernhard Schölkopf
Andreas Krause
CML
47
5
0
17 Jun 2024
Scalable Differentiable Causal Discovery in the Presence of Latent Confounders with Skeleton Posterior (Extended Version)
Pingchuan Ma
Rui Ding
Qiang Fu
Jiaru Zhang
Shuai Wang
Shi Han
Dongmei Zhang
CML
50
2
0
15 Jun 2024
Causal Discovery over High-Dimensional Structured Hypothesis Spaces with Causal Graph Partitioning
Ashka Shah
Adela DePavia
Nathaniel Hudson
Ian T. Foster
Rick L. Stevens
CML
26
1
0
10 Jun 2024
Challenges and Considerations in the Evaluation of Bayesian Causal Discovery
Amir Mohammad Karimi Mamaghan
P. Tigas
Karl Henrik Johansson
Yarin Gal
Yashas Annadani
Stefan Bauer
CML
36
3
0
05 Jun 2024
Deriving Causal Order from Single-Variable Interventions: Guarantees & Algorithm
Mathieu Chevalley
Patrick Schwab
Arash Mehrjou
30
1
0
28 May 2024
Demystifying amortized causal discovery with transformers
Francesco Montagna
Max Cairney-Leeming
Dhanya Sridhar
Francesco Locatello
CML
57
1
0
27 May 2024
Amortized Active Causal Induction with Deep Reinforcement Learning
Yashas Annadani
P. Tigas
Stefan Bauer
Adam Foster
34
0
0
26 May 2024
CausalPlayground: Addressing Data-Generation Requirements in Cutting-Edge Causality Research
Andreas Sauter
Erman Acar
Aske Plaat
SyDa
CML
34
1
0
21 May 2024
Accelerated Fully First-Order Methods for Bilevel and Minimax Optimization
Chris Junchi Li
54
0
0
01 May 2024
FiP: a Fixed-Point Approach for Causal Generative Modeling
M. Scetbon
Joel Jennings
Agrin Hilmkil
Cheng Zhang
Chao Ma
37
2
0
10 Apr 2024
Optimal Transport for Structure Learning Under Missing Data
Vy Vo
He Zhao
Trung Le
Edwin V. Bonilla
Dinh Q. Phung
CML
43
3
0
23 Feb 2024
Federated Causal Discovery from Heterogeneous Data
Loka Li
Ignavier Ng
Gongxu Luo
Biwei Huang
Guan-Hong Chen
Tongliang Liu
Bin Gu
Kun Zhang
FedML
34
5
0
20 Feb 2024
Graph Structure Inference with BAM: Introducing the Bilinear Attention Mechanism
Philipp Froehlich
Heinz Koeppl
GNN
16
1
0
12 Feb 2024
The Essential Role of Causality in Foundation World Models for Embodied AI
Tarun Gupta
Wenbo Gong
Chao Ma
Nick Pawlowski
Agrin Hilmkil
...
Jianfeng Gao
Stefan Bauer
Danica Kragic
Bernhard Schölkopf
Cheng Zhang
30
15
0
06 Feb 2024
Sample, estimate, aggregate: A recipe for causal discovery foundation models
Menghua Wu
Yujia Bao
Regina Barzilay
Tommi Jaakkola
CML
41
7
0
02 Feb 2024
CORE: Towards Scalable and Efficient Causal Discovery with Reinforcement Learning
Andreas Sauter
N. Botteghi
Erman Acar
Aske Plaat
CML
11
3
0
30 Jan 2024
Towards Causal Relationship in Indefinite Data: Baseline Model and New Datasets
Hang Chen
Xinyu Yang
Keqing Du
CML
26
2
0
16 Jan 2024
Stable Differentiable Causal Discovery
Achille Nazaret
Justin Hong
Elham Azizi
David M. Blei
CML
18
9
0
17 Nov 2023
Distributionally Robust Skeleton Learning of Discrete Bayesian Networks
Yeshu Li
Brian D. Ziebart
OOD
21
0
0
10 Nov 2023
Learned Causal Method Prediction
Shantanu Gupta
Cheng Zhang
Agrin Hilmkil
OOD
33
2
0
07 Nov 2023
Discovering Mixtures of Structural Causal Models from Time Series Data
Sumanth Varambally
Yi-An Ma
Rose Yu
20
4
0
10 Oct 2023
Constraint-Free Structure Learning with Smooth Acyclic Orientations
Riccardo Massidda
Francesco Landolfi
Martina Cinquini
Davide Bacciu
25
6
0
15 Sep 2023
Differentiable Bayesian Structure Learning with Acyclicity Assurance
Quang-Duy Tran
Phuoc Nguyen
Bao Duong
Thin Nguyen
29
2
0
04 Sep 2023
Joint Bayesian Inference of Graphical Structure and Parameters with a Single Generative Flow Network
T. Deleu
Mizu Nishikawa-Toomey
Jithendaraa Subramanian
Nikolay Malkin
Laurent Charlin
Yoshua Bengio
BDL
30
43
0
30 May 2023
A Scale-Invariant Sorting Criterion to Find a Causal Order in Additive Noise Models
Alexander G. Reisach
Myriam Tami
C. Seiler
Antoine Chambaz
S. Weichwald
CML
31
19
0
31 Mar 2023
GFlowNets for AI-Driven Scientific Discovery
Moksh Jain
T. Deleu
Jason S. Hartford
Cheng-Hao Liu
Alex Hernandez-Garcia
Yoshua Bengio
AI4CE
23
45
0
01 Feb 2023
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
26
11
0
07 Nov 2022
CausalBench: A Large-scale Benchmark for Network Inference from Single-cell Perturbation Data
Mathieu Chevalley
Yusuf Roohani
Arash Mehrjou
J. Leskovec
Patrick Schwab
CML
21
36
0
31 Oct 2022
MARS: Meta-Learning as Score Matching in the Function Space
Krunoslav Lehman Pavasovic
Jonas Rothfuss
Andreas Krause
BDL
18
4
0
24 Oct 2022
Learning Multiscale Non-stationary Causal Structures
Gabriele DÁcunto
G. D. F. Morales
P. Bajardi
Francesco Bonchi
CML
AI4TS
32
3
0
31 Aug 2022
TabPFN: A Transformer That Solves Small Tabular Classification Problems in a Second
Noah Hollmann
Samuel G. Müller
Katharina Eggensperger
Frank Hutter
25
260
0
05 Jul 2022
From Ordinary Differential Equations to Structural Causal Models: the deterministic case
Joris Mooij
Dominik Janzing
Bernhard Schölkopf
68
101
0
09 Aug 2014
1