ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.13554
  4. Cited By
Training and Inference on Any-Order Autoregressive Models the Right Way

Training and Inference on Any-Order Autoregressive Models the Right Way

26 May 2022
Andy Shih
Dorsa Sadigh
Stefano Ermon
    BDL
    TPM
    OOD
    CML
ArXivPDFHTML

Papers citing "Training and Inference on Any-Order Autoregressive Models the Right Way"

20 / 20 papers shown
Title
Diffusion Models are Secretly Exchangeable: Parallelizing DDPMs via Autospeculation
Diffusion Models are Secretly Exchangeable: Parallelizing DDPMs via Autospeculation
Hengyuan Hu
Aniket Das
Dorsa Sadigh
Nima Anari
DiffM
19
0
0
06 May 2025
Target Concrete Score Matching: A Holistic Framework for Discrete Diffusion
Target Concrete Score Matching: A Holistic Framework for Discrete Diffusion
Ruixiang Zhang
Shuangfei Zhai
Yizhe Zhang
James Thornton
Zijing Ou
Joshua M. Susskind
Navdeep Jaitly
DiffM
33
0
0
23 Apr 2025
Distilling semantically aware orders for autoregressive image generation
Distilling semantically aware orders for autoregressive image generation
Rishav Pramanik
Antoine Poupon
Juan A. Rodriguez
Masih Aminbeidokhti
David Vazquez
Christopher Pal
Zhaozheng Yin
M. Pedersoli
26
0
0
23 Apr 2025
Ideas in Inference-time Scaling can Benefit Generative Pre-training Algorithms
Jiaming Song
Linqi Zhou
DiffM
59
0
0
10 Mar 2025
Large Language Diffusion Models
Large Language Diffusion Models
Shen Nie
Fengqi Zhu
Zebin You
Xiaolu Zhang
Jingyang Ou
Jun Hu
Jun Zhou
Yankai Lin
Ji-Rong Wen
Chongxuan Li
100
12
0
14 Feb 2025
TabularARGN: A Flexible and Efficient Auto-Regressive Framework for Generating High-Fidelity Synthetic Data
TabularARGN: A Flexible and Efficient Auto-Regressive Framework for Generating High-Fidelity Synthetic Data
P. Tiwald
Ivona Krchova
Andrey Sidorenko
Mariana Vargas-Vieyra
Mario Scriminaci
Michael Platzer
44
1
0
21 Jan 2025
Simplified and Generalized Masked Diffusion for Discrete Data
Simplified and Generalized Masked Diffusion for Discrete Data
Jiaxin Shi
Kehang Han
Z. Wang
Arnaud Doucet
Michalis K. Titsias
DiffM
74
62
0
17 Jan 2025
[MASK] is All You Need
[MASK] is All You Need
Vincent Tao Hu
Bjorn Ommer
DiffM
135
2
0
09 Dec 2024
Energy-Based Diffusion Language Models for Text Generation
Energy-Based Diffusion Language Models for Text Generation
Minkai Xu
Tomas Geffner
Karsten Kreis
Weili Nie
Yilun Xu
J. Leskovec
Stefano Ermon
Arash Vahdat
DiffM
44
7
0
28 Oct 2024
Improving Vector-Quantized Image Modeling with Latent Consistency-Matching Diffusion
Improving Vector-Quantized Image Modeling with Latent Consistency-Matching Diffusion
Bac Nguyen
and Chieh-Hsin Lai
Yuhta Takida
Naoki Murata
Toshimitsu Uesaka
Stefano Ermon
Yuki Mitsufuji
61
0
0
18 Oct 2024
Plug-and-Play Controllable Generation for Discrete Masked Models
Plug-and-Play Controllable Generation for Discrete Masked Models
Wei Guo
Yuchen Zhu
Molei Tao
Yongxin Chen
32
1
0
03 Oct 2024
CodonMPNN for Organism Specific and Codon Optimal Inverse Folding
CodonMPNN for Organism Specific and Codon Optimal Inverse Folding
Hannes Stark
Umesh Padia
Julia Balla
Cameron Diao
George Church
25
1
0
25 Sep 2024
Parallel Sampling via Counting
Parallel Sampling via Counting
Nima Anari
Ruiquan Gao
Aviad Rubinstein
47
3
0
18 Aug 2024
Your Absorbing Discrete Diffusion Secretly Models the Conditional Distributions of Clean Data
Your Absorbing Discrete Diffusion Secretly Models the Conditional Distributions of Clean Data
Jingyang Ou
Shen Nie
Kaiwen Xue
Fengqi Zhu
Jiacheng Sun
Zhenguo Li
Chongxuan Li
DiffM
41
27
0
06 Jun 2024
Probabilistic Neural Circuits
Probabilistic Neural Circuits
Pedro Zuidberg Dos Martires
TPM
21
2
0
10 Mar 2024
Discrete Diffusion Modeling by Estimating the Ratios of the Data
  Distribution
Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution
Aaron Lou
Chenlin Meng
Stefano Ermon
DiffM
22
63
0
25 Oct 2023
Generative Marginalization Models
Generative Marginalization Models
Sulin Liu
Peter J. Ramadge
Ryan P. Adams
20
1
0
19 Oct 2023
Bayesian Flow Networks
Bayesian Flow Networks
Alex Graves
R. Srivastava
Timothy James Atkinson
Faustino J. Gomez
BDL
33
41
0
14 Aug 2023
Continuous diffusion for categorical data
Continuous diffusion for categorical data
Sander Dieleman
Laurent Sartran
Arman Roshannai
Nikolay Savinov
Yaroslav Ganin
...
Conor Durkan
Curtis Hawthorne
Rémi Leblond
Will Grathwohl
J. Adler
DiffM
11
98
0
28 Nov 2022
Zero-Shot Text-to-Image Generation
Zero-Shot Text-to-Image Generation
Aditya A. Ramesh
Mikhail Pavlov
Gabriel Goh
Scott Gray
Chelsea Voss
Alec Radford
Mark Chen
Ilya Sutskever
VLM
253
4,764
0
24 Feb 2021
1