ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.13892
  4. Cited By
EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
  Networks

EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural Networks

27 May 2022
Runlin Lei
Zhen Wang
Yaliang Li
Bolin Ding
Zhewei Wei
    AAML
ArXivPDFHTML

Papers citing "EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural Networks"

24 / 24 papers shown
Title
SpecSphere: Dual-Pass Spectral-Spatial Graph Neural Networks with Certified Robustness
SpecSphere: Dual-Pass Spectral-Spatial Graph Neural Networks with Certified Robustness
Y. Choi
Chong-Kwon Kim
14
0
0
13 May 2025
Statistical physics analysis of graph neural networks: Approaching optimality in the contextual stochastic block model
O. Duranthon
L. Zdeborová
41
0
0
03 Mar 2025
Training Robust Graph Neural Networks by Modeling Noise Dependencies
Training Robust Graph Neural Networks by Modeling Noise Dependencies
Yeonjun In
Kanghoon Yoon
Sukwon Yun
Kibum Kim
Sungchul Kim
Chanyoung Park
OOD
NoLa
70
0
0
27 Feb 2025
Rewiring Techniques to Mitigate Oversquashing and Oversmoothing in GNNs:
  A Survey
Rewiring Techniques to Mitigate Oversquashing and Oversmoothing in GNNs: A Survey
Hugo Attali
Davide Buscaldi
Nathalie Pernelle
AI4CE
61
1
0
26 Nov 2024
Heterophilic Graph Neural Networks Optimization with Causal
  Message-passing
Heterophilic Graph Neural Networks Optimization with Causal Message-passing
Botao Wang
Jia Li
Heng Chang
K. Zhang
Fugee Tsung
70
2
0
21 Nov 2024
Graph Adversarial Diffusion Convolution
Graph Adversarial Diffusion Convolution
Songtao Liu
Jinghui Chen
Tianfan Fu
Lu Lin
Marinka Zitnik
Dinghao Wu
DiffM
20
2
0
04 Jun 2024
How Universal Polynomial Bases Enhance Spectral Graph Neural Networks:
  Heterophily, Over-smoothing, and Over-squashing
How Universal Polynomial Bases Enhance Spectral Graph Neural Networks: Heterophily, Over-smoothing, and Over-squashing
Keke Huang
Yu Guang Wang
Ming Li
Pietro Lió
35
16
0
21 May 2024
Bounding the Expected Robustness of Graph Neural Networks Subject to
  Node Feature Attacks
Bounding the Expected Robustness of Graph Neural Networks Subject to Node Feature Attacks
Yassine Abbahaddou
Sofiane Ennadir
J. Lutzeyer
Michalis Vazirgiannis
Henrik Bostrom
AAML
OOD
21
6
0
27 Apr 2024
Simplified PCNet with Robustness
Simplified PCNet with Robustness
Bingheng Li
Xuanting Xie
Haoxiang Lei
Ruiyi Fang
Zhao Kang
14
4
0
06 Mar 2024
Provable Filter for Real-world Graph Clustering
Provable Filter for Real-world Graph Clustering
Xuanting Xie
Erlin Pan
Zhao Kang
Wenyu Chen
Bingheng Li
GNN
31
2
0
06 Mar 2024
Asymptotic generalization error of a single-layer graph convolutional
  network
Asymptotic generalization error of a single-layer graph convolutional network
O. Duranthon
L. Zdeborová
MLT
35
2
0
06 Feb 2024
AdaFGL: A New Paradigm for Federated Node Classification with Topology
  Heterogeneity
AdaFGL: A New Paradigm for Federated Node Classification with Topology Heterogeneity
Xunkai Li
Zhengyu Wu
Wentao Zhang
Henan Sun
Ronghua Li
Guoren Wang
FedML
23
1
0
22 Jan 2024
An Effective Universal Polynomial Basis for Spectral Graph Neural
  Networks
An Effective Universal Polynomial Basis for Spectral Graph Neural Networks
Keke Huang
Pietro Lió
11
1
0
30 Nov 2023
Optimal Inference in Contextual Stochastic Block Models
Optimal Inference in Contextual Stochastic Block Models
O. Duranthon
L. Zdeborová
BDL
35
8
0
06 Jun 2023
LON-GNN: Spectral GNNs with Learnable Orthonormal Basis
LON-GNN: Spectral GNNs with Learnable Orthonormal Basis
Qian Tao
Zhen Wang
Wenyuan Yu
Yaliang Li
Zhewei Wei
17
4
0
24 Mar 2023
Invariant Layers for Graphs with Nodes of Different Types
Invariant Layers for Graphs with Nodes of Different Types
Dmitry Rybin
Ruoyu Sun
Zhimin Luo
16
0
0
27 Feb 2023
Robust Mid-Pass Filtering Graph Convolutional Networks
Robust Mid-Pass Filtering Graph Convolutional Networks
Jincheng Huang
Lun Du
Xu Chen
Qiang Fu
Shi Han
Dongmei Zhang
AAML
11
34
0
16 Feb 2023
A Survey on Spectral Graph Neural Networks
A Survey on Spectral Graph Neural Networks
Deyu Bo
Xiao Wang
Yang Liu
Yuan Fang
Yawen Li
Chuan Shi
21
24
0
11 Feb 2023
GLINKX: A Scalable Unified Framework For Homophilous and Heterophilous
  Graphs
GLINKX: A Scalable Unified Framework For Homophilous and Heterophilous Graphs
Marios Papachristou
Rishab Goel
Frank Portman
M. Miller
Rong Jin
8
0
0
01 Nov 2022
Graph Neural Networks for Graphs with Heterophily: A Survey
Graph Neural Networks for Graphs with Heterophily: A Survey
Xin-Yang Zheng
Yi Wang
Yixin Liu
Ming Li
Miao Zhang
Di Jin
Philip S. Yu
Shirui Pan
16
213
0
14 Feb 2022
Beyond Low-frequency Information in Graph Convolutional Networks
Beyond Low-frequency Information in Graph Convolutional Networks
Deyu Bo
Xiao Wang
C. Shi
Huawei Shen
GNN
84
445
0
04 Jan 2021
Geom-GCN: Geometric Graph Convolutional Networks
Geom-GCN: Geometric Graph Convolutional Networks
Hongbin Pei
Bingzhen Wei
Kevin Chen-Chuan Chang
Yu Lei
Bo Yang
GNN
167
1,058
0
13 Feb 2020
Multi-scale Attributed Node Embedding
Multi-scale Attributed Node Embedding
Benedek Rozemberczki
Carl Allen
Rik Sarkar
GNN
142
828
0
28 Sep 2019
Contextual Stochastic Block Models
Contextual Stochastic Block Models
Y. Deshpande
Andrea Montanari
Elchanan Mossel
S. Sen
98
131
0
23 Jul 2018
1