ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.14421
  4. Cited By
Approximation of Functionals by Neural Network without Curse of
  Dimensionality

Approximation of Functionals by Neural Network without Curse of Dimensionality

28 May 2022
Yahong Yang
Yang Xiang
ArXivPDFHTML

Papers citing "Approximation of Functionals by Neural Network without Curse of Dimensionality"

7 / 7 papers shown
Title
Learn Sharp Interface Solution by Homotopy Dynamics
Learn Sharp Interface Solution by Homotopy Dynamics
Chuqi Chen
Yahong Yang
Yang Xiang
Wenrui Hao
ODL
57
1
0
01 Feb 2025
Newton Informed Neural Operator for Computing Multiple Solutions of
  Nonlinear Partials Differential Equations
Newton Informed Neural Operator for Computing Multiple Solutions of Nonlinear Partials Differential Equations
Wenrui Hao
Xinliang Liu
Yahong Yang
25
4
0
23 May 2024
Deeper or Wider: A Perspective from Optimal Generalization Error with
  Sobolev Loss
Deeper or Wider: A Perspective from Optimal Generalization Error with Sobolev Loss
Yahong Yang
Juncai He
AI4CE
26
7
0
31 Jan 2024
Optimal Deep Neural Network Approximation for Korobov Functions with
  respect to Sobolev Norms
Optimal Deep Neural Network Approximation for Korobov Functions with respect to Sobolev Norms
Yahong Yang
Yulong Lu
34
3
0
08 Nov 2023
Energy stable neural network for gradient flow equations
Energy stable neural network for gradient flow equations
Gang-Han Fan
Tianyu Jin
Yuan Lan
Yang Xiang
Luchan Zhang
18
0
0
17 Sep 2023
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
205
2,282
0
18 Oct 2020
Approximation by Combinations of ReLU and Squared ReLU Ridge Functions
  with $ \ell^1 $ and $ \ell^0 $ Controls
Approximation by Combinations of ReLU and Squared ReLU Ridge Functions with ℓ1 \ell^1 ℓ1 and ℓ0 \ell^0 ℓ0 Controls
Jason M. Klusowski
Andrew R. Barron
124
142
0
26 Jul 2016
1