Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.14962
Cited By
Sampling-free Inference for Ab-Initio Potential Energy Surface Networks
30 May 2022
Nicholas Gao
Stephan Günnemann
DiffM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Sampling-free Inference for Ab-Initio Potential Energy Surface Networks"
7 / 7 papers shown
Title
Learning Equivariant Non-Local Electron Density Functionals
Nicholas Gao
Eike Eberhard
Stephan Günnemann
26
1
0
10 Oct 2024
Variational Monte Carlo on a Budget -- Fine-tuning pre-trained Neural Wavefunctions
Michael Scherbela
Leon Gerard
Philipp Grohs
25
5
0
15 Jul 2023
Gold-standard solutions to the Schrödinger equation using deep learning: How much physics do we need?
Leon Gerard
Michael Scherbela
P. Marquetand
Philipp Grohs
AI4CE
29
34
0
19 May 2022
Explicitly antisymmetrized neural network layers for variational Monte Carlo simulation
Jeffmin Lin
Gil Goldshlager
Lin Lin
32
22
0
07 Dec 2021
High-Performance Large-Scale Image Recognition Without Normalization
Andrew Brock
Soham De
Samuel L. Smith
Karen Simonyan
VLM
220
450
0
11 Feb 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
183
1,218
0
08 Jan 2021
Deep neural network solution of the electronic Schrödinger equation
J. Hermann
Zeno Schätzle
Frank Noé
133
444
0
16 Sep 2019
1